As Chronic Lymphocytic Leukemia (CLL) is associated with several defects in the T cell compartment, the impact of tumour burden on the autologous immune system was studied. Gene expression profiles (using Applied Biosystem Human Genome Microarray) identified 237 genes with significantly increased expression and 221 genes with significantly decreased expression (p<0.05) in CD3+ cells from CLL patients compared with healthy donors. Panther software analysis identified 34/237 upregulated genes and 26/221 downregulated genes that were involved in specific pathways, mainly cell differentiation and proliferation, survival, apoptosis, cytoskeleton formation, vesicle trafficking and T cell activation. The 26 dowregulated genes included Zap70, a member of the syk family protein tyrosine kinase, which is involved in T-cell activation. Zap-70 results were validated by mRNA quantification by RT-PCR (−1.77 fold in comparison with healthy controls) and by flow-cytometric analysis (Mean Intensity Fluorescence=33±12 vs 80±23.62 in controls, p<0.05). To test the hypothesis that activation with OKT3 /IL-2 could bypass these T cell deficiencies, activated T cells from 20 patients with CLL were tested in vitro for cytotoxicity (using the 51chromium release assay) against mutated and unmutated (according to IgVH mutational status) autologous B cells, DAUDI, K562 and P815 cell lines. After 10 days’ culture, the T cell count remained unchanged; CD8 cells expanded more than CD4; TCR spectratyping analysis indicated no differences in TCR repertoires. Activation restored the ZAP-70 mRNA (+1.67 fold). The 51chromium release cytotoxicity assay showed an index > 30% in 5/20 patients. The other 15 were partially cytotoxic against P815, K562 and Daudi. Cell line analysis in all 20 confirmed prevalently T cell-mediated cytotoxicity and poor NK/LAK activity. Cytotoxicity did not correlate with B cell mutational status. We tested the cytotoxic activity of autologous activated T cells in NOD/SCID mice co-transplanted with leukaemic B cells. Only activated T cells exerting cytotoxicity vs autologous B-cell CLL prevent CLL in human-mouse chimera, as confirmed by PCR and FACS analysis which visualised only CD3+ cells. In conclusion, in patients with CLL, activating autologous T cells with OKT3 /IL-2 bypasses, at least in part, the T cell immunological deficiencies. These in vitro and in vivo findings might serve to throw light on new mechanisms that could be exploited in immunotherapy designed to exert disease control.

Author notes

Disclosure: No relevant conflicts of interest to declare.

Sign in via your Institution