Natural Killer (NK) cells have the ability to suppress graft-versus-host disease (GVHD) while inducing a graft-versus-tumor response (GVT) during allogeneic bone marrow transplantation (BMT). Previous studies in allogeneic BMT models have shown NK cell trafficking to and proliferation in lymphoid organs and GVHD target organs, which are also sites of donor T cell trafficking. This study aims to investigate the impact of NK cells on alloreactive, GVHD-inducing donor T cells. Interleukin-2 activated allogeneic NK cells isolated from C57Bl6 (H–2b) or FVB (H–2q) animals were transplanted along with T cell-depleted bone marrow into lethally irradiated BALB/c (H–2d) mice, followed 2 days later by luciferase-expressing CD4+ and CD8+ conventional T cells from the same donor strain (NK+Tcon group). Control mice received lethal irradiation and T cell-depleted bone marrow on day 0, and luciferase-expressing T cells on day 2 after transplant (Tcon group). Bioluminescence imaging of NK+Tcon mice revealed a significantly lower T cell bioluminescent signal (p=0.03 for FVB into BALB/c on day 6) than from Tcon mice. CFSE proliferation analysis of alloreactive T cells on day 3 after transplant showed no significant change in the percent of donor T cells that have divided in the spleen, and only a slight decrease in the percent of T cells that have divided in the lymph nodes when NK cells are present. However, at this timepoint 82% of the proliferating cells have divided past the third generation, in contrast to 64% in the NK+Tcon mice. Donor T cells in both groups become equally activated in vivo, expressing similar levels of the early-activation marker CD69. T cells re-isolated from NK+Tcon animals at day 5 stained 2 to 10-fold higher for the TUNEL apoptosis marker than those from Tcon mice in the mesenteric and peripheral lymph nodes, respectively (p<0.0001). Additionally, decreased numbers of T cells were re-isolated from the peripheral lymph nodes in the NK+Tcon group as compared to the Tcon group. This increase in TUNEL staining was not seen when the transplanted NK cells were isolated from a perforin-deficient donor. This indicates that NK cells in lymph nodes use a perforin-dependent mechanism to increase apoptosis in proliferating, alloreactive donor T-cells, which are syngeneic to the transplanted NK cells. Donor T cells re-isolated from the lymph nodes of transplanted mice up-regulate the NKG2D ligand Rae1γ as compared to naïve T cells, as shown by FACS. This suggests that NK cells may cause direct lysis of alloreactive donor T cells in vivo during GVHD induction, mediated by the NK cell activating receptor NKG2D. This study provides crucial mechanistic information regarding the function of NK cells in suppressing GVHD.

Author notes

Disclosure: No relevant conflicts of interest to declare.

Sign in via your Institution