The dic(9;12)(p12;p11.2) has been described as a rare cytogenetic abnormality in pediatric precursor B-cell ALL. Initial studies suggested that the rearrangement is associated with a favorable outcome, and recent studies demonstrated the presence of a PAX5-ETV6 fusion gene was associated with this cytogenetic abnormality. Twenty cases with a cytogenetic dic(9;12) were identified in the Children’s Oncology Group (COG) cytogenetics databases. FISH analysis with the ETV6-RUNX1 (TEL-AML1) probes was done on 12 of these samples. Five cases were positive for fusion, indicating a cryptic t(12;21)(p13;q22), and also had loss of the ETV6 probe from the chromosome 12 not involved in the t(12;21). Seven cases were negative for fusion and had loss of an ETV6 signal, although one of the latter had a diminished ETV6 signal identified. To determine whether both PAX5-ETV6 and ETV6-RUNX1 rearrangements occurred in some patients, a diagnostic sample from each patient was analyzed by RT-PCR for the PAX5-ETV6 and ETV6-RUNX1 fusion genes. Primers from exon 3 of PAX5 and exon 3 of ETV6 were used for the PAX5-ETV6 analysis and from exon 5 of ETV6 and exon 4 of RUNX1 for the ETV6-RUNX1 analysis. Of the 20 cases, only 8 were RT-PCR positive for the PAX5-ETV6 fusion with the above primers; however, an additional 2 were RT-PCR positive with alternate primers, and all 10 of these were negative for the ETV6-RUNX1 fusion by RT-PCR. Of the remaining 10 patients, 9 were RT-PCR positive for the ETV6-RUNX1 fusion, including all of the ETV6-RUNX1 cases positive by FISH. The gene rearrangement associated with the dic(9;12) in these cases is not known. One patient was negative for both fusions by RT-PCR, negative by FISH for ETV6-RUNX1 rearrangement, yet had loss of an ETV6 signal. No cytogenetic differences could be seen between the 2 groups, either in the appearance of the dic(9;12) or in the other abnormalities identified. These results demonstrate the presence of two mutually exclusive dic(9;12) rearrangements in pediatric ALL; one associated with ETV6-RUNX1 rearrangement and one resulting in PAX5-ETV6 fusion. Both PAX5-ETV6 and ETV6-RUNX1 rearrangements are associated with a favorable prognosis. However, molecular analysis of the dic(9;12) patients must be performed to determine whether the dicentric chromosome results in PAX5-ETV6 fusion or whether the case has ETV6-RUNX1 fusion.

Author notes

Disclosure:Research Funding: Funded by the Children’s Oncology Group.

Sign in via your Institution