Adoptive cell transfer (ACT) immunotherapy following lymphodepleting conditioning is a promising strategy for the treatment of metastatic solid tumors, however the difficulties in generating autologous tumor specific lymphocytes for every patient has significantly limited its applications. Allogeneic partly matched tumor specific T cells could be used for patients in whom autologous cells are not available, however their rapid rejection by the host restricts this approach. When CD8+ pmel-1 T cells from B6-BALB-C F1 (b/d) were transferred into B16 tumor-bearing B6 mice (b/b) or into a different F1 (b/k), these tumor-specific T cells were rapidly rejected, and had no impact on the tumor regression. Here we show that following myeloablative conditioning, the adoptive transfer of allogeneic, major histocompatibility mismatched tumor-specific T lymphocytes resulted in the regression of large vascularized tumors. The ability of adoptively transferred allogeneic T cells to mediate tumor regression was directly proportional to the dose of irradiation given prior T cell transfer which also correlated with the in vivo survival of the transferred cells. At the highest irradiation dose used (i.e. 11 Gy) allogeneic T cells could survive for as long as 4 weeks and their efficacy was comparable to syngeneic tumor-reactive T cells. In addition we found that the risk of inducing a graft versus host (GVH) reaction was minor when the specificity of transferred TCR is confined. In fact co-transfer of transgenic cells and small amounts of open repertoire T cells (2*10e4) able to react with the host did not result in any measurable toxicity whereas co transfer of greater quantities (2*10e5 or more) could cause fatal GVHD effect. Interestingly GVH reaction was associated with an improved tumor treatment, though this effect was transient as most of the animals succumbed to GVHD. Here we demonstrate that allogeneic T cells might represent an important tool in cancer immunotherapy allowing treatment of patients for whom it is not possible to obtain autologous cells. Furthermore the possible synergy between tumor specific allogeneic T cells and GVH effect could be exploited in bone marrow transplant protocols.

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution