The retinoblastoma tumor suppressor protein (RB) plays important roles in the control of the cell cycle, DNA-damage checkpoint, differentiation and apoptosis. It is estimated that RB is dysfunctional/inactivated in up to 40% of human leukemias. Positive as well as inhibitory signals are integrated into the phosphorylation of the RB protein to regulate the G1 to S-phase progression of the cell cycle. Despite the importance of RB in leukemia, the consequences of loss of RB on hematopoietic stem and progenitor cell (HSPC) function in vivo are still not clear and have been controversially discussed. Using Cre-enzyme expression driven by the hematopoietic specific Vav1-promotor, we generated mice that are constitutively deficient in RB (hemRb−/− animals) in HSPCs. HemRb−/− mice showed anemia with an increased number of reticulocytes in PB, consistent with a published role of RB in erythroid differentiation. In addition, the frequency of Mac-1 positive cells in BM was increased to 67% compared to 47% in control animals, whereas the frequency of B220 positive B-lymphoid cells was almost 10-fold reduced, without affecting the T-lymphoid compartment. HemRb−/− mice possessed a 3-fold enlarged spleen with a 5-fold increased number of colony-forming cells (CFCs) and severe extramedullary hematopoiesis, a phenotype also reported for animals transplanted with Rb−/− fetal liver cells.

BM of hemRb−/− mice showed an almost 3-fold reduction of HSC frequency, measured by the cobblestone-area forming cell assay (CAFC) assay, but not a decrease in the number of HSCs determined by cell surface staining and flow cytometry. Upon transplantation into NOD/SCID animals or upon competitive transplantation into C57BL/6. CD45.1 animals, HSPCs from hemRb−/− mice contributed 4 to 6-fold less to hematopoiesis. HSPCs from hemRb−/− animals were neither impaired in their ability to home to the BM, nor did they show increased apoptosis. Finally, we detected a significant 4-fold decrease in stem cell function/numbers upon stress caused by 5-FU treatment in hemRB−/− mice compared to control animals. We conclude that upon transplantation/stress, HSPCs from hemRb−/− animals are impaired in their self-renewal function. HemRb−/− animals also showed a 2-fold increase in the frequency of CFCs in peripheral blood. As we detected no increased leukemia incidence in the hemRb−/− animals (now up to 1 year of age), loss of the tumor suppressor RB in hematopoietic cells might be regarded as necessary, but not sufficient for causing early onset leukemia. In summary, loss of RB results in context/localization dependent phenotypes in the hematopoietic hierarchy, influencing stem and progenitor cells in function, localization and differentiation ability.

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution