Tumor Necrosis factor (TNF)-related apoptosis- inducing ligand (TRAIL) is a new member of TNF superfamily discovered recently. Several studies showed that TRAIL can preferentially induce apoptosis in a variety of tumor cells, while most normal cells tested do not appear to be sensitive to TRAIL. In the present study, we treated K562 and U937 leukemia cell lines with recombinant mutant human TRAIL (rmhTRAIL) alone or together with daunorubicin (DNR) to investigate the apoptosis of the treated cells and the synergistic reaction of rmhTRAIL and DNR. The normal cell line MRC-5 was used as control. The expression of four TRAIL receptors mRNA (death receptor DR4 and DR5, decoy receptor DcR1 and DcR2) in the cells lines were detected before and after the treatment by DNR. (1) AO-EB double staining and TUNEL staining were used to evaluate the morphological change of leukemia cell lines before and after the treatment. The results showed that rmhTRAIL could induce the apoptosis of leukemia cell lines and a dose-dependent manner was found in leukemia cell lines but not in MRC-5 cell lines. (2) The growth inhibition rate of leukemia cell lines induced by rmhTRAIL alone or combined with DNR was examined with MTT assays. Different concentrations of rmhTRAIL(8, 40, 200, 1000ng/mL)alone or combined with DNR(8, 40, 200, 1000ng/mL) was used. The result showed a dose-dependent growth inhibition by rmhTRAIL alone for K562- and U937-cell line (P<0.05) also, but not for MRC-5 cell line (P>0.05). The IC50 for K562 cells and for U937 cells had no statistic difference (538.80 vs 301.56ng/mL, P>0.05). In leukemia cell lines, the growth inhibition rates in combination groups were much higher than in rmhTRAIL or DNR alone groups (P<0.05), and no synergistic killing effects was found in MRC-5 cells (P<0.05). It was concluded that rmhTRAIL had synergistic effects with DNR in the growth inhibition of K562 and U937 cells. (3). To explore the antitumor mechanisms of rmhTRAIL combined with DNR, the expression level of the DR4, DR5 and DcR1, DcR2 mRNA in these three cell lines was examined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) before and after the treatment with DNR. The high expression of DR4,DR5 mRNA in the tested cells were observed before the treatment of DNR, while very low or even undetectable expression level of DcR1 and DcR2 mRNA were observed in U937 and K562 cells, and a high expression level of DcR1 and DcR2 mRNA in MRC-5 cells were observed. After 24 hours treatment of three cell lines with DNR (200ng/ml), the expression level of DR5 mRNA increased in K562 and U937 cells (P<0.05). DR4 mRNA also increased in K562 cells but not in U937 cells. There was no change in DcR1 and DcR2 mRNA level in three cell lines. The four receptors’ mRNA level in MRC-5 cells was not influenced by DNR. Our results indicated that rmhTRAIL could induce the apoptosis of leukemia cell lines, and DNR could enhance significantly the sensitivity of K562 and U937 cells to apoptosis induced by rmhTRAIL through up-regulation of death receptors. Therefore, we presumed TRAIL might be act as a new agent for biological therapy in leukemia.

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution