Shwachman-Diamond syndrome is an autosomal recessive disorder characterized by exocrine pancreatic insufficiency, bone marrow failure, and leukemia predisposition. The majority of patients with Shwachman-Diamond syndrome harbor mutations in the SBDS gene. SBDS is a novel gene of unknown function and is highly conserved throughout evolution. Studies of the yeast orthologue, YLR022c/SDO1, suggest that SBDS may play a role in ribosome biogenesis. In support of this hypothesis, we have found that the SBDS protein shuttles in and out of the nucleolus. Previously we have shown that SBDS nucleolar localization is regulated in a cell cycle-dependant manner. We now find that SBDS nucleolar localization is also lost following exposure to actinomycin D, suggesting that SBDS nucleolar localization is dependent on active ribosomal RNA (rRNA) transcription. In cell survival assays, SBDS−/− patient-derived cells are sensitive to actinomycin D treatment relative to normal control cells. Introduction of the wild-type SBDS cDNA into SBDS−/− cells corrects their actinomycin D sensitivity, confirming that the observed sensitivity is SBDS-dependent. In contrast, SBDS−/− cells do not exhibit increased sensitivity to cyclohexamide, a protein translation inhibitor. Consistent with this result, SBDS protein co-localizes with ribosomal precursor subunits but not with mature polysomes upon sucrose gradient sedimentation. No differences in polysome profiles are observed between SBDS−/− cells and wild type control cells. Gel filtration studies suggest that SBDS associates into a complex with other proteins. SBDS co-immunoprecipitates with other nucleolar proteins involved in rRNA biogenesis. RNA immunoprecipitation studies reveal that SBDS also associates with the 28S rRNA but not the 18S rRNA. These findings support the hypothesis that SBDS plays a role in ribosome biogenesis

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution