Regulation of hematopoietic progenitor cell lineage-commitment, proliferation and differentiation by cell-cell adhesion mechanisms is poorly understood. Activated leukocyte cell adhesion molecule (ALCAM) is a member of the immunoglobulin super family. It is expressed by human hematopoietic stem cells, bone marrow stromal cells, endothelial cells and osteoblasts. Monoclonal anti-ALCAM antibodies inhibit myeloid but not erythroid colony formation, which suggest a lineage-specific role for ALCAM in hematopoiesis. To explore this hypothesis, ALCAM mRNA and protein expression was quantified in human hematopoietic cell lines of myeloid, lymphoid, erythroid, and megakaryocytic lineages by real-time quantitative PCR and western blot analyses. No ALCAM transcripts were detected in K562 and MEG-01 cells, the level of ALCAM mRNA was 2-fold more abundant in HL-60 and THP-1 cells than in U937 and Jurkat cells. This expression pattern was confirmed at the protein level as none of the megakaryocyte-erythroid progenitor cell lines (K562, MEG-01 and HEL) expressed ALCAM. On the contrary, ALCAM was abundantly expressed in THP-1 and HL-60 cells and moderately in U937 and Jurkat cells. GATA-1 was abundantly expressed in megakaryocyte-erythroid progenitor cell lines but not in any of the myeloid cell lines. Thus, there is an inverse relationship between expression of ALCAM and GATA-1 in hematopoietic cells. To test the hypothesis that GATA-1 is involved in silencing ALCAM gene expression, multiple ALCAM-promoter luciferase constructs were studied. A negative regulatory region was identified in the ALCAM promoter containing an inverted GATA-1 cis element at −850 upstream of the translational start site. GATA-1 occupied this canonical element in vivo as determined by chromatin immunoprecipitation experiments. A two-base pair mutation of the −850 GATA-1 cis element increased ALCAM promoter activity 3-fold in K562 and MEG-01 cells, providing direct evidence of GATA-1’s negative regulatory role in ALCAM promoter activity. To test the hypothesis that ALCAM silencing is essential for megakaryocyte-erythroid progenitor cell biology, stable lines of K562 cells were established forcibly expressing ALCAM-GFP or a control GFP. Live cell imaging demonstrated recruitment of ALCAM to sites of cell-cell adhesion in ALCAM-GFP-K562 cells, whereas GFP remained distributed in the cell cytosol in control cells. ALCAM-GFP-K562 cells formed markedly more clusters consisting of significantly more cells than control GFP-K562 cells. Finally, the number of ALCAM-GFP-K562 cells at log-phase growth was significantly higher than GFP-K562 cells over the same time period. Our findings demonstrate for the first time lineage-specific silencing of the cell adhesion molecule ALCAM in megakaryocyte-erythroid progenitor cells, mediated at least in part by GATA-1. That ectopic expression of ALCAM increased proliferation of K562 cells suggests that GATA-1-mediated silencing of ALCAM is essential in slowing down expansion of megakaryocyte-erythroid progenitor cells. Indeed, preliminary studies show an excessive number of erythroid and megakaryocytic cells in the adult spleen of ALCAM-null mice. This model is being used in ongoing studies to confirm our findings in vivo.

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution