The generation of lymphoid and myeloid lineage cells from hematopoietic stem cells is controlled by multiple transcription factors regulating distinct developmental and functional aspects. Interferon consensus sequence binding protein (ICSBP)/interferon regulatory factor 8 (IRF8) is a transcription factor known to regulate the differentiation of macrophages, granulocytes, and dendritic cells. Our recent findings that IRF8 transcripts and protein are highly expressed in germinal center (GC) B cells suggest that IFR8 may also play a role in normal B cell development. In IRF8 deficient mice, the number of early B lineage cells (pre-pro-B) was reduced by 5-fold, indicating a defect in early B lineage commitment. While the numbers of late pre-B and immature B cells were moderately reduced (~2-fold), recirculating mature B cells were almost undetectable in the bone marrow of mutant mice. This deficiency in early stage B cells is correlated with increased expression of PU.1, a crucial transcription factor for myeloid and lymphoid lineage specification. Interestingly, the number of splenic transitional 1 (T1) cells was slightly increased but the numbers of T2 and follicular (FO) B-2 cells were moderately decreased in mutant mice. This indicates that positive selection of T2 cells into the mature B-2 pool is regulated by IRF8. The marginal zone (MZ) B cell and peritoneal CD11b+ B-1b cell compartments were also slightly expanded in IRF8 knockout mice. Overall, these results provide compelling evidence that IRF8 regulates B cell differentiation and function at multiple stages.

Author notes

Corresponding author

Sign in via your Institution