Myelokathexis (WHIM syndrome) is a very rare hematopoietic congenital disorder that is characterized by extremely low level of circulating neutrophils in peripheral blood. It is inherited as an autosomal dominant disease and is diagnosed in early childhood. These patients may have hypogammaglobulinemia and suffer from recurrent infections associated with warts. The hallmark of myelokathexis is a hyperplastic bone marrow and hypersegmented neutrophils with nuclear lobs connected with thin filaments. Myelokathexis is due to a characteristic retention of mature neutrophils in bone marrow, which are not being released to peripheral circulation. We and others reported abnormal cell survival characteristics and impaired bcl-x expression in bone marrow myeloid cells of myelokathexis patients that was partially restored by G-CSF treatment. Recently, it has also been reported that heterozygous truncation mutations in the carboxyterminal domain of the CXCR4 gene, a sole receptor for SDF-1 chemokine, were observed in most, but not all of the families with WHIM syndrome. Subsequently, an impaired receptor internalization and increased chemotaxis towards SDF-1 have been observed in cells expressing truncated CXCR4. Nevertheless, the mechanism of mutant CXCR4 induced myelokathexis remains largely unknown.

We performed mutational analysis of the CXCR4 gene in 3 unrelated families with myelokathexis and identified a previously reported R334ter truncation mutation in exon 2 in two of the families. In addition, two silent polymorphisms have been identified in exon 2 of the CXCR4 gene in one of these patients. The third family with afflicted mother and son had a new mutation in the CXCR4 carboxyterminal domain, which resulted in deletion of the last 16 amino acids and subsequent frame shift. None of these mutations were observed in healthy volunteers examined. Since the morphological examination by electron microscopy and flow cytometry analysis of bone marrow cells from some of these patients revealed characteristic apoptotic features, we examined the effect of mutant CXCR4 gene expression on survival of human promyelocytic HL-60 cells. Preliminary data demonstrated that human promyelocytic cells transfected with truncated CXCR4 exhibited impaired cell survival characteristics compared with control HL-60 cells transfected with intact CXCR4. The truncated, but not wild type CXCR4 also increased apoptosis in HL-60 cells induced to differentiate along the granulocytic pathway as determined by flow cytometry of annexin V labeled cells. Thus, these data link together the abnormal survival of proliferating and differentiating myeloid cells in WHIM syndrome with mutant CXCR4 expression. Current studies are focused on elucidation of specific signaling pathways mediating mutant CXCR4-triggered myelokathexis.

Author notes

Corresponding author

Sign in via your Institution