Advanced glycation end products (AGEs) are products of non-enzymatic glycation/oxidation of proteins/lipids that accumulate slowly during natural aging and at a much accelerated rate in a variety of disorders such as diabetes, renal failure, and Alzheimer’s disease. AGE modifications do not only change the physicochemical properties of the afflicted molecules, but also induce cellular signaling, activation of transcription factors and subsequent gene expression in vitro and in vivo. Most of the biologic activities associated with AGEs have been transduced by receptor for AGE (RAGE). Recently, AGEs are known to be in association with diverse cancers in terms of cellular proliferation and metastasis. However, little is known about the role of AGEs in acute myelogenous leukemia (AML). Here we examined the effects of the AGEs-RAGE interaction on the cell proliferation and intracellular signaling of AGEs in human leukemia cell lines. Expression of RAGE was observed in 8 AML cell lines examined, and up-regulated by treatment of AGE. AGE induced the proliferation of AML cell lines, HL60 and HEL, in a dose-dependent manner. Treatment with 5 μM of antisense S-ODN for RAGE did effectively inhibit cell growth of HEL cells. Exposure of HL60 and HEL with AGE induced a significant increase in the numbers of cells in S phase of cell cycle in a dose-dependent manner. AGE enhanced the expression of cell cycle regulatory proteins such as cyclin-dependent kinase (CDK) 2/4/6, cyclin D1/E/B in a dose- and a time-dependent manner. In addition, the protein levels of the cyclin-dependent kinase inhibitor (CDKI), p21 and p27, were decreased by 24 hr exposure of AGE from 10 to 200 μg/ml in HEL. Furthermore, treatment of HEL with 200 μg/ml of AGE triggered activation of mitogen-activated protein (MAP) kinases, Erk, Akt, and p38, pathways and in nuclear translocation of transcription factors NF-kB. These results indicated that AGE induced the cell growth of human AML cells, HL60 and HEL, via augmentation of cell cycle and activation of MAPK kinase pathways. Up-regulation of RAGE by exposure of AGE suggested that cellular proliferation of AML cells might be mediated in autocrine fashion.

Author notes

Corresponding author

Sign in via your Institution