Clinical trial results have demonstrated that lenalidomide (Revlimid®) reduces or even eliminates the need for red blood cell transfusions in some anemic myelodysplastic patients. We have examined whether lenalidomide and Actimid™, members of a new class of immunomodulatory drugs (IMiDs®), which are currently under evaluation for the treatment of hematological cancers could regulate erythropoiesis and hemoglobin synthesis. For this purpose, we used an in vitro culture model to differentiate human erythroid progenitors from bone marrow or peripheral blood CD34+ cells. We demonstrate that lenalidomide and AztimidTM modulate erythropoiesis and increase proliferation of immature erythroid cells. In addition to the regulation of erythroid differentiation, lenalidomide and ActimidTM are potent inducers of fetal hemoglobin. Unlike other inducers of fetal hemoglobin such as 5-aza-cytidine that are cytotoxic, IMiDs® promoted survival of erythroblast cultured with known cytotoxic drug. Gene expression profiling of erythroid differentiated cells showed that IMiDs® regulate specific erythroid transcription factors and genes that participate in hemoglobin synthesis, and genes invoved in cell cycle and cellular differentiation. Globin gene expression is controlled by IMiDs® during erythroid differentiation by inducing fetal hemoglobin synthesis. Our results support the hypothesis that IMiDs® restore effective erythropoiesis in myelodysplastic patients and protect erythroid cells from the cytotoxic effect of chemotherapeutic agents. In conclusion, IMiDs® may represent an interesting new therapy for cancer-related anemia and β-hemoglobinopathies.

Author notes

Corresponding author

Sign in via your Institution