Platelets generate nitric oxide (NO) in response to agonist stimulation. Previous reports have shown that the endothelial nitric oxide synthase (eNOS) plays a role in agonist-stimulated platelet NO production and in platelet activation. Here we show that platelets from eNOS knockout mice (eNOS−/−) showed only partial reduction in thrombin-induced NO production compared to wild type platelets (50% reduction), indicating the presence of another NOS isoform in platelets. More importantly, we show that resting platelets express functional inducible nitric oxide synthase (iNOS), which participates in platelet activation. Compared to wild type platelets, thrombin-induced NO production was reduced by 54% in platelets isolated from iNOS knockout mice (iNOS−/−), indicating an iNOS-dependent NO production in platelets induced by thrombin. Since thrombin-induced NO production occurs during the first 3 min of thrombin stimulation, our findings provide the first evidence for a short-term regulation of iNOS activity independent of transcription regulation. In contrast, previous description of iNOS activation was primarily at the transcriptional level and required much longer time of induction. To determine the role of iNOS in platelet activation, platelets from wild type and iNOS−/− mice were stimulated with low concentrations of agonists. iNOS−/− platelets exhibited lower aggregation and secretion response compared to wild type control, indicating that iNOS plays a stimulatory role in platelet activation. We also examined the effect of iNOS inhibitors on platelet activation. Human and mouse platelets preincubated with iNOS specific inhibitors, 1400W and aminoguanidine, exhibited a dose-dependent inhibition of platelet secretion and aggregation induced by either low-dose thrombin or collagen. Furthermore, the inhibitory effect of iNOS-specific inhibitors was only shown in wild type mouse platelets, but was lacking in iNOS−/− platelets. Thus, activation of both iNOS and eNOS is important in agonist-induced NO production which stimulates platelet secretion and aggregation.

Author notes

Corresponding author

Sign in via your Institution