Exposure to ionizing radiation (IR) and certain chemotherapeutic agents not only causes acute bone marrow (BM) suppression but also leads to long-term residual hematopoietic injury. This later effect has been attributed to the damage to hematopoietic stem cell (HSC) self-renewal. Using a mouse model, we investigated whether IR induces senescence in HSCs, as induction of HSC senescence can lead to the impairment of HSC self-renewal. The results showed that exposure of C57BL/6 mice to a sublethal dose (6.5 Gy) of total body irradiation (TBI) resulted in a long-lasting quantitative and qualitative reduction in HSCs (Lin c-kit+ Sca-1+ or LKS+ cells). Compared to control HSCs, HSCs from irradiated BM at 4 weeks after TBI exhibited a significant reduction in day-35 CAFC frequency and deficiency in cell proliferation and colony formation in a single cell culture assay stimulated with SCF/TPO and SCF/TPO/IL-3, respectively. In addition, transplantation of irradiated HSCs (500 LKS+ cells/recipient) produced less than 1% long-term (2-month) engraftment in a competitive repopulation assay while transplantation of the same number of control HSCs resulted in 24.8% engraftment. Furthermore, HSCs from irradiated mice expressed increased levels of p16Ink4a and senescence-associated beta-galactosidase (SA-beta-gal), two commonly used biomarkers of cellular senescence. In contrast, hematopoietic progenitor cells (Lin c-kit+ Sca-1 or LKS cells) from irradiated mice did not show significant changes in clonogenesity in a CFU assay and expressed minimal levels of p16Ink4a and SA-beta-gal. These results suggest that exposure to IR can induce senescence selectively in HSCs but not in HPCs. Interestingly, this IR- induced HSC senescence was associated with a prolonged elevation of p21Cip1/Waf1, p16Ink4a and p19ARF mRNA expression, whereas the expression of p27Kip1, p18Ink4c and p19 Ink4d mRNA was not increased. This suggests that p21Cip1/Waf1, p16Ink4a and p19ARF may play an important role in IR-induced senescence in HSCs, since their expression has been implicated in the initiation, establishment and maintenance of cellular senescence. Therefore, these findings provide valuable insights into the mechanisms underlying IR-induced long-term BM damage. This could lead to the discovery of novel molecular targets for intervention to circumvent IR-induced BM toxicity. In addition, understanding how normal HSCs senesce after IR and chemotherapy will help us to elucidate the molecular mechanisms whereby leukemia/cancer stem cells evade these cancer treatments and provide better knowledge of organismal aging.

Author notes

Corresponding author

Sign in via your Institution