The expandability of CD4+CD25+ regulatory T-cells (Treg) has been shown in vitro and in vivo. Activation of telomerase activity is a prerequisite for clonal expansion and telomere maintenance in T-cells. There is currently no data available on the expression and function of telomerase in proliferating Treg. Analyses of telomere length by flow-FISH, real-time PCR and Southern blotting revealed that Treg isolated from healthy human volunteers have significantly shortened telomeres when compared to CD4+CD25 T-cells. However, telomere length is not further shortened in Treg isolated from the peripheral blood of cancer patients, despite the observation that the regulatory T-cell pool of these patients was significantly enlarged. To gain further insight into maintenance of telomere length of Treg, we induced in vitro proliferation of Treg by stimulation with anti-CD3 and IL-2. This led to a rapid increase of telomerase activity, as determined by PCR-ELISA. However, when we focused on the proliferating fraction of Treg using a sorting strategy based on the dilution of CFSE, we could show a significant telomere shortening in Treg with high proliferative and immmuno-suppressive capacity. Of note, proliferating CFSElow Treg are characterized by high telomerase activity, which however seems to be insufficient to avoid further telomere shortening under conditions of strong in vitro stimulation.

In contrast, under conditions of in vivo expansion of Treg in cancer patients, the induction of telomerase activity is likely to compensate for further telomere erosion. These data might be of importance when considering the application of in vitro expanded Treg for the treatment of GvHD or autoimmune diseases, as telomere shortening might be associated with genomic instability.

Author notes

Corresponding author

Sign in via your Institution