A previous letter to this journal discussed the importance of correlating increased bone marrow microvessel density with known prognostic variables in acute myeloid leukemia (AML)1 since earlier reports have not addressed this issue.2-5 One group correlated indirect evidence of angiogeneic potential (increasing levels of intracellular vascular endothelial growth factor [VEGF] protein) in newly diagnosed AML with shorter overall and disease-free survival and also found VEGF protein to be an independent prognostic variable. However, no relationship between VEGF protein with the traditional prognostic variables such as white blood cell or blast count, age, cytogenetic changes, performance status, or presence of an antecedent hematologic disorder was found.6 

To address this issue, we collected 4 nonneoplastic control bone marrow specimens and 21 specimens that contained at least 80% AML from different treatment protocols. All samples were from the time of diagnosis unless otherwise noted in the data table. In a blinded fashion, we cultured 5 × 105 cells × 72 hours in 700 μL EGM (Clonetics) without human epidermal growth factor or bovine brain extract additives and 2% fetal bovine serum in 24-well plates in triplicate. The conditioned media from each well was collected, filtered, and placed over 1 × 104 human umbilical vein endothelial cells (Clonetics, Walkersville, MD) for an additional 72 hours. Endothelial cell proliferation was measured using the MTT assay.7 

AML samples were classified into 2 broad, therapeutically relevant prognostic groups: favorable/intermediate (F/I) and unfavorable (U) according to published criteria.8,9Unfavorable cases (n = 12) were those with unfavorable cytogenetics, history, or morphologic evidence of myelodysplasia, or disease relapse within 6 months of diagnosis. Favorable/intermediate prognosis cases (n = 9) were those without these features.

As compared to controls (Table 1, Figure 1), 6 of 12 unfavorable but 0 of 9 F/I cases were able to support or enhance endothelial growth at least minimally. When this data were analyzed using the Duncan multiple means test for the prognosis versus the percent change, there is clear evidence of statistical difference (P < .05) between the F/I and unfavorable groups.

Table 1.
CaseAge (y)/sexCytogenetics, dysplasia, relapse informationFABPrognostic category% change in endothelial proliferation
55/F De novo, Inv(16), + 22 M4 F/I − 12 
50/M De novo, 46XY M5a F/I − 27 
55/F De novo, 46XX M1 F/I − 20 
40/M De novo, t(15;17), add 7(q36) M3 F/I − 32 
19/M Inv 16 M4Eo F/I − 42  
32/M De novo, + 11 M1 F/I − 13  
76/M De novo, + 8 M0 F/I − 50 
67/M t(15;17) M3 F/I − 41  
68/F De novo, + 4, + 11 M4 F/I − 21  
10 18/F Relapsed, t(6;9) M1 − 15  
11 66/M De novo, 46XY, relapse within 2 months M2 + 53  
12 64/M + 8, dyspoiesis M1 + 5.5  
13 68/M History of MDS, 46XY M2 − 31  
14* 31/F t(11;19), relapsed within 6 months, dyspoiesis M4 + 35 
15 54/M 11q23 M5a − 19 
16 83/F Multiple relapses M5a + 5 
17 68/F t(9;22) and − 7 Mixed lineage + 3 
18* 42/M Complex karyotype M1 + 0 
19* 55/M History of MDS M5 − 27 
20 61/F History of CMML, complex karyotype M4 − 12  
21 53/F History of MDS, complex karyotype M2 − 26 
CaseAge (y)/sexCytogenetics, dysplasia, relapse informationFABPrognostic category% change in endothelial proliferation
55/F De novo, Inv(16), + 22 M4 F/I − 12 
50/M De novo, 46XY M5a F/I − 27 
55/F De novo, 46XX M1 F/I − 20 
40/M De novo, t(15;17), add 7(q36) M3 F/I − 32 
19/M Inv 16 M4Eo F/I − 42  
32/M De novo, + 11 M1 F/I − 13  
76/M De novo, + 8 M0 F/I − 50 
67/M t(15;17) M3 F/I − 41  
68/F De novo, + 4, + 11 M4 F/I − 21  
10 18/F Relapsed, t(6;9) M1 − 15  
11 66/M De novo, 46XY, relapse within 2 months M2 + 53  
12 64/M + 8, dyspoiesis M1 + 5.5  
13 68/M History of MDS, 46XY M2 − 31  
14* 31/F t(11;19), relapsed within 6 months, dyspoiesis M4 + 35 
15 54/M 11q23 M5a − 19 
16 83/F Multiple relapses M5a + 5 
17 68/F t(9;22) and − 7 Mixed lineage + 3 
18* 42/M Complex karyotype M1 + 0 
19* 55/M History of MDS M5 − 27 
20 61/F History of CMML, complex karyotype M4 − 12  
21 53/F History of MDS, complex karyotype M2 − 26 
*

Sample analyzed was from time of relapse (after treatment).

FAB indicates French-American-British classification.

Fig. 1.

Effect of conditioned media from AML and nonneoplastic bone marrow samples on endothelial proliferation.

AML samples from patients with unfavorable prognostic features (defined in text) were significantly more likely to enhance endothelial proliferation. ○, non-neoplastic bone marrows; □, favorable/intermediate prognosis AML; ▵, unfavorable prognosis AML.

Fig. 1.

Effect of conditioned media from AML and nonneoplastic bone marrow samples on endothelial proliferation.

AML samples from patients with unfavorable prognostic features (defined in text) were significantly more likely to enhance endothelial proliferation. ○, non-neoplastic bone marrows; □, favorable/intermediate prognosis AML; ▵, unfavorable prognosis AML.

Close modal

Other investigators have used AML culture supernatants as we have and demonstrated enhanced endothelial growth in vitro; however, without correlation with prognostic variables.4,10 Our preliminary results suggest that AML cases with unfavorable prognostic features are more likely to enhance endothelial proliferation in vitro than cases with favorable/intermediate prognosis. The nature of a possible relationship between prognostic variables and enhanced endothelial proliferation is intriguing. It may be that the complex karyotypic and molecular genetic changes in unfavorable prognosis AML blasts alter the expression of angioregulatory molecules such as VEGF, as suggested previously.6 

1
Reddy
V
Moreb
J
Prognostic correlation of increased angiogenesis in acute myeloid leukemia with cytogenetics.
Blood.
96
2000
1617
1618
2
Padro
T
Ruiz
S
Bieker
R
et al
Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia.
Blood.
95
2000
2637
2644
3
Aguayo
A
Kantarjian
H
Manshouri
T
et al
Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes.
Blood.
96
2000
2240
2245
4
De Bont
ES
Rosati
S
Jacobs
S
Kamps
WA
Vellenga
E
Increased bone marrow vascularization in patients with acute myeloid leukaemia: a possible role for vascular endothelial growth factor.
Br J Haematol.
113
2001
296
304
5
Hussong
JW
Rodgers
GM
Shami
PJ
Evidence of increased angiogenesis in patients with acute myeloid leukemia.
Blood.
95
2000
309
313
6
Aguayo
A
Estey
E
Kantarjian
H
et al
Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia.
Blood.
94
1999
3717
3721
7
Pels
E
Nuyts
RM
Breebaart
AC
Hartmann
C
Rapid quantitative assays for corneal endothelial cell viability in vitro.
Cornea.
12
1993
289
294
8
Leith
CP
Willman
CL
Prognostic markers in acute leukemia.
Curr Opin Hematol.
3
1996
329
334
9
Slovak
ML
Kopecky
KJ
Cassileth
PA
et al
Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group study.
Blood.
96
2000
4075
4083
10
Fiedler
W
Graeven
U
Ergun
S
et al
Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia.
Blood.
89
1997
1870
1875
Sign in via your Institution