• Notch activity decrease in HSCs induces myeloid-biased stem cell expansion and clustering at the expense of hematopoietic regeneration.

  • Deletion of sinusoidal Jag2 decreases Notch activity in HSCs, increasing symmetric divisions and impairing daughter fate commitment.

Abstract

Aged hematopoietic stem cells (HSCs) expand in clusters over time, while reducing their regenerative capacity and their ability to preserve the homeostasis of the hematopoietic system. The expression of Notch ligands in the bone marrow (BM) niche is essential for hematopoiesis. However, the impact of Notch signaling on adult HSC function and its involvement in HSC aging remains controversial. Here, we show that Notch activation in young HSCs is not homogeneous, and it is triggered by sinusoidal expression of the Notch ligand Jagged2 (Jag2). Sinusoidal Jag2 deletion in young mice recapitulates the decrease in Notch activity observed in aged HSCs and alters HSC divisional symmetry and fate priming, promoting myeloid-biased HSCs (My-HSCs) expansion. Mechanistically, our data reveals that upon decreasing sinusoidal Jag2 expression, HSCs themselves upregulate Jag2, which cis-inhibits Notch signaling, resulting in the expansion of My-HSCs and in reduced hematopoietic regeneration. Collectively, these findings identify the crosstalk between BM niche-driven and HSC intrinsic features in regulating HSC fate priming and regenerative potential and reveal an extrinsic Notch trans-activation to intrinsic cis-inhibition switch underlying HSC aging.

1.
Kasbekar
M
,
Mitchell
CA
,
Proven
MA
,
Passegué
E
.
Hematopoietic stem cells through the ages: a lifetime of adaptation to organismal demands
.
Cell Stem Cell
.
2023
;
30
(
11
):
1403
-
1420
.
2.
Geiger
H
,
de Haan
G
,
Florian
MC
.
The ageing haematopoietic stem cell compartment
.
Nat Rev Immunol
.
2013
;
13
(
5
):
376
-
389
.
3.
Mejia-Ramirez
E
,
Florian
MC
.
Understanding intrinsic hematopoietic stem cell aging
.
Haematologica
.
2020
;
105
(
1
):
22
-
37
.
4.
Thambyrajah
R
,
Bigas
A
.
Notch signaling in HSC emergence: when, why and how
.
Cells
.
2022
;
11
(
3
):
358
.
5.
Rossi
DJ
,
Bryder
D
,
Zahn
JM
, et al
.
Cell intrinsic alterations underlie hematopoietic stem cell aging
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
26
):
9194
-
9199
.
6.
Beerman
I
,
Bhattacharya
D
,
Zandi
S
, et al
.
Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
12
):
5465
-
5470
.
7.
Pinho
S
,
Frenette
PS
.
Haematopoietic stem cell activity and interactions with the niche
.
Nat Rev Mol Cell Biol
.
2019
;
20
(
5
):
303
-
320
.
8.
Ho
YH
,
Méndez-Ferrer
S
.
Microenvironmental contributions to hematopoietic stem cell aging
.
Haematologica
.
2020
;
105
(
1
):
38
-
46
.
9.
Matteini
F
,
Mulaw
MA
,
Florian
MC
.
Aging of the hematopoietic stem cell niche: new tools to answer an old question
.
Front Immunol
.
2021
;
12
:
738204
.
10.
May
M
,
Slaughter
A
,
Lucas
D
.
Dynamic regulation of hematopoietic stem cells by bone marrow niches
.
Curr Stem Cell Rep
.
2018
;
4
(
3
):
201
-
208
.
11.
Lucas
D
.
Structural organization of the bone marrow and its role in hematopoiesis
.
Curr Opin Hematol
.
2021
;
28
(
1
):
36
-
42
.
12.
Young
K
,
Eudy
E
,
Bell
R
, et al
.
Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging
.
Cell Stem Cell
.
2021
;
28
(
8
). 1473.e7-1482.e7.
13.
Purton
LE
,
Scadden
DT
. The hematopoietic stem cell niche.
StemBook
.
Harvard Stem Cell Institute
;
2008
https://www.ncbi.nlm.nih.gov/books/NBK27051. Accessed June 2025.
14.
Batsivari
A
,
Haltalli
MLR
,
Passaro
D
,
Pospori
C
,
Lo Celso
C
,
Bonnet
D
.
Dynamic responses of the haematopoietic stem cell niche to diverse stresses
.
Nat Cell Biol
.
2020
;
22
(
1
):
7
-
17
.
15.
Poulos
MG
,
Ramalingam
P
,
Gutkin
MC
, et al
.
Endothelial transplantation rejuvenates aged hematopoietic stem cell function
.
J Clin Invest
.
2017
;
127
(
11
):
4163
-
4178
.
16.
Saçma
M
,
Pospiech
J
,
Bogeska
R
, et al
.
Haematopoietic stem cells in perisinusoidal niches are protected from ageing
.
Nat Cell Biol
.
2019
;
21
(
11
):
1309
-
1320
.
17.
Maryanovich
M
,
Zahalka
AH
,
Pierce
H
, et al
.
Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche
.
Nat Med
.
2018
;
24
(
6
):
782
-
791
.
18.
Ho
YH
,
Del Toro
R
,
Rivera-Torres
J
, et al
.
Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging
.
Cell Stem Cell
.
2019
;
25
(
3
). 407.e6-418.e6.
19.
Florian
MC
,
Klose
M
,
Sacma
M
, et al
.
Aging alters the epigenetic asymmetry of HSC division
.
PLoS Biol
.
2018
;
16
(
9
):
e2003389
.
20.
Florian
MC
,
Nattamai
KJ
,
Dörr
K
, et al
.
A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing
.
Nature
.
2013
;
503
(
7476
):
392
-
396
.
21.
Wu
Q
,
Zhang
J
,
Kumar
S
, et al
.
Resilient anatomy and local plasticity of I and stress haematopoiesis
.
Nature
.
2024
;
627
(
8005
):
839
-
846
.
22.
Florian
MC
.
Powerful microscopy reveals blood-cell production in bone marrow
.
Nature
.
2024
;
627
(
8005
):
741
-
742
.
23.
Vázquez-Ulloa
E
,
Lin
KL
,
Lizano
M
,
Sahlgren
C
.
Reversible and bidirectional signaling of notch ligands
.
Crit Rev Biochem Mol Biol
.
2022
;
57
(
4
):
377
-
398
.
24.
Kovall
RA
,
Gebelein
B
,
Sprinzak
D
,
Kopan
R
.
The canonical notch signaling pathway: structural and biochemical insights into shape, sugar, and force
.
Dev Cell
.
2017
;
41
(
3
):
228
-
241
.
25.
Pajcini
KV
,
Speck
NA
,
Pear
WS
.
Notch signaling in mammalian hematopoietic stem cells
.
Leukemia
.
2011
;
25
(
10
):
1525
-
1532
.
26.
Souilhol
C
,
Lendinez
JG
,
Rybtsov
S
, et al
.
Developing HSCs become Notch independent by the end of maturation in the AGM region
.
Blood
.
2016
;
128
(
12
):
1567
-
1577
.
27.
Boisset
JC
,
van Cappellen
W
,
Andrieu-Soler
C
,
Galjart
N
,
Dzierzak
E
,
Robin
C
.
In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium
.
Nature
.
2010
;
464
(
7285
):
116
-
120
.
28.
de Bruijn
MFTR
,
Ma
X
,
Robin
C
,
Ottersbach
K
,
Sanchez
MJ
,
Dzierzak
E
.
Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta
.
Immunity
.
2002
;
16
(
5
):
673
-
683
.
29.
Taoudi
S
,
Medvinsky
A
.
Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
22
):
9399
-
9403
.
30.
Mascarenhas
MI
,
Parker
A
,
Dzierzak
E
,
Ottersbach
K
.
Identification of novel regulators of hematopoietic stem cell development through refinement of stem cell localization and expression profiling
.
Blood
.
2009
;
114
(
21
):
4645
-
4653
.
31.
Guo
P
,
Poulos
MG
,
Palikuqi
B
, et al
.
Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression
.
J Clin Invest
.
2017
;
127
(
12
):
4242
-
4256
.
32.
Poulos
MG
,
Guo
P
,
Kofler
NM
, et al
.
Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis
.
Cell Rep
.
2013
;
4
(
5
):
1022
-
1034
.
33.
Thambyrajah
R
,
Maqueda
M
,
Neo
WH
, et al
.
Cis inhibition of NOTCH1 through JAGGED1 sustains embryonic hematopoietic stem cell fate
.
Nat Commun
.
2024
;
15
(
1
):
1604
.
34.
Ichise
T
,
Yoshida
N
,
Ichise
H
.
FGF2-induced Ras-MAPK signalling maintains lymphatic endothelial cell identity by upregulating endothelial-cell-specific gene expression and suppressing TGFβ signalling through Smad2
.
J Cell Sci
.
2014
;
127
(
Pt 4
):
845
-
857
.
35.
Xu
J
,
Krebs
LT
,
Gridley
T
.
Generation of mice with a conditional null allele of the Jagged2 gene
.
Genesis 2000
.
2010
;
48
(
6
):
390
-
393
.
36.
Imayoshi
I
,
Isomura
A
,
Harima
Y
, et al
.
Oscillatory control of factors determining multipotency and fate in mouse neural progenitors
.
Science
.
2013
;
342
(
6163
):
1203
-
1208
.
37.
Sueda
R
,
Kageyama
R
.
Regulation of active and quiescent somatic stem cells by Notch signaling
.
Dev Growth Differ
.
2020
;
62
(
1
):
59
-
66
.
38.
Guiu
J
,
Shimizu
R
,
D’Altri
T
, et al
.
Hes repressors are essential regulators of hematopoietic stem cell development downstream of Notch signaling
.
J Exp Med
.
2013
;
210
(
1
):
71
-
84
.
39.
Thambyrajah
R
,
Bigas
A
.
Notch signaling in HSC emergence: when, why and how
.
Cells
.
2022
;
11
(
3
):
358
.
40.
Saçma
M
,
Matteini
F
,
Mulaw
MA
, et al
.
Fast and high-fidelity in situ 3D imaging protocol for stem cells and niche components for mouse organs and tissues
.
STAR Protoc
.
2022
;
3
(
3
):
101483
.
41.
Florian
MC
,
Dörr
K
,
Niebel
A
, et al
.
Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation
.
Cell Stem Cell
.
2012
;
10
(
5
):
520
-
530
.
42.
Grigoryan
A
,
Guidi
N
,
Senger
K
, et al
.
LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells
.
Genome Biol
.
2018
;
19
(
1
):
189
.
43.
Montserrat-Vazquez
S
,
Ali
NJ
,
Matteini
F
, et al
.
Transplanting rejuvenated blood stem cells extends lifespan of aged immunocompromised mice
.
NPJ Regen Med
.
2022
;
7
(
1
):
78
.
44.
Xu
J
,
Krebs
LT
,
Gridley
T
.
Generation of mice with a conditional null allele of the Jagged2 gene
.
Genesis
.
2010
;
48
(
6
):
390
-
393
.
45.
Gazit
R
,
Mandal
PK
,
Ebina
W
, et al
.
Fgd5 identifies hematopoietic stem cells in the murine bone marrow
.
J Exp Med
.
2014
;
211
(
7
):
1315
-
1331
.
46.
Chapple
RH
,
Tseng
YJ
,
Hu
T
, et al
.
Lineage tracing of murine adult hematopoietic stem cells reveals active contribution to steady-state hematopoiesis
.
Blood Adv
.
2018
;
2
(
11
):
1220
-
1228
.
47.
Gekas
C
,
Graf
T
.
CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age
.
Blood
.
2013
;
121
(
22
):
4463
-
4472
.
48.
Bigas
A
,
Espinosa
L
.
Hematopoietic stem cells: to be or Notch to be
.
Blood
.
2012
;
119
(
14
):
3226
-
3235
.
49.
Balistreri
CR
,
Madonna
R
,
Melino
G
,
Caruso
C
.
The emerging role of Notch pathway in ageing: Focus on the related mechanisms in age-related diseases
.
Ageing Res Rev
.
2016
;
29
:
50
-
65
.
50.
Mejia-Ramirez
E
,
Picazo-Ianez
P
,
Montserrat-Vazquez
S
, et al
.
Targeting RhoA activity rejuvenates aged hematopoietic stem cells
.
bioRxiv
.
Preprint posted online 23 April 2025
.
51.
Flohr Svendsen
A
,
Skinder
N
,
Zwart
E
, et al
.
A comprehensive transcriptome signature of murine hematopoietic stem cell aging
.
Blood
.
2021
;
138
(
6
):
439
-
451
.
52.
Rodriguez-Fraticelli
AE
,
Weinreb
C
,
Wang
SW
, et al
.
Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis
.
Nature
.
2020
;
583
(
7817
):
585
-
589
.
53.
Mann
M
,
Mehta
A
,
de Boer
CG
, et al
.
Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age
.
Cell Rep
.
2018
;
25
(
11
). 2992.e5-3005.e5.
54.
Ravichandran
S
,
Hartmann
A
,
del Sol
A
.
SigHotSpotter: scRNA-seq-based computational tool to control cell subpopulation phenotypes for cellular rejuvenation strategies
.
Bioinformatics
.
2019
;
36
(
6
):
1963
-
1965
.
55.
García-Prat
L
,
Perdiguero
E
,
Alonso-Martín
S
, et al
.
FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age
.
Nat Cell Biol
.
2020
:
1
-
12
.
56.
Maillard
I
,
Koch
U
,
Dumortier
A
, et al
.
Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells
.
Cell Stem Cell
.
2008
;
2
(
4
):
356
-
366
.
57.
Vanderbeck
AN
,
Maillard
I
.
Notch in the niche: new insights into the role of Notch signaling in the bone marrow
.
Haematologica
.
2019
;
104
(
11
):
2117
-
2119
.
58.
Butko
E
,
Pouget
C
,
Traver
D
.
Complex regulation of HSC emergence by the Notch signaling pathway
.
Dev Biol
.
2016
;
409
(
1
):
129
-
138
.
59.
Lomelí
H
,
Castillo-Castellanos
F
.
Notch signaling and the emergence of hematopoietic stem cells
.
Dev Dyn
.
2020
;
249
(
11
):
1302
-
1317
.
60.
Butler
JM
,
Nolan
DJ
,
Vertes
EL
, et al
.
Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells
.
Cell Stem Cell
.
2010
;
6
(
3
):
251
-
264
.
61.
Hadland
BK
,
Varnum-Finney
B
,
Poulos
MG
, et al
.
Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells
.
J Clin Invest
.
2015
;
125
(
5
):
2032
-
2045
.
62.
Zhang
YW
,
Mess
J
,
Aizarani
N
, et al
.
Hyaluronic acid-GPRC5C signalling promotes dormancy in haematopoietic stem cells
.
Nat Cell Biol
.
2022
;
24
(
7
):
1038
-
1048
.
63.
Rodriguez-Fraticelli
AE
,
Wolock
SL
,
Weinreb
CS
, et al
.
Clonal analysis of lineage fate in native hematopoiesis
.
Nature
.
2018
;
553
(
7687
):
212
-
216
.
64.
Derecka
M
,
Herman
JS
,
Cauchy
P
, et al
.
EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential
.
Nat Immunol
.
2020
;
21
(
3
):
261
-
273
.
65.
Verovskaya
EV
,
Dellorusso
PV
,
Passegué
E
.
Losing sense of self and surroundings: hematopoietic stem cell aging and leukemic transformation
.
Trends Mol Med
.
2019
;
25
(
6
):
494
-
515
.
66.
Säwen
P
,
Eldeeb
M
,
Erlandsson
E
, et al
.
Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging
.
eLife
.
2018
;
7
:
e41258
.
67.
Varnum-Finney
B
,
Halasz
LM
,
Sun
M
,
Gridley
T
,
Radtke
F
,
Bernstein
ID
.
Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells
.
J Clin Invest
.
2011
;
121
(
3
):
1207
-
1216
.
68.
del Álamo
D
,
Rouault
H
,
Schweisguth
F
.
Mechanism and significance of cis-inhibition in Notch signalling
.
Curr Biol
.
2011
;
21
(
1
):
R40
-
R47
.
69.
Sjöqvist
M
,
Andersson
ER
.
Do as I say, Not(ch) as I do: lateral control of cell fate
.
Dev Biol
.
2019
;
447
(
1
):
58
-
70
.
70.
Bosman
SL
,
Sonnen
KF
. Signaling oscillations in embryonic development. In:
Soriano
PM
, eds.
Current Topics in Developmental Biology
.
Academic Press
;
2022
:
341
-
372
.
71.
Souilhol
C
,
Lendinez
JG
,
Rybtsov
S
, et al
.
Developing HSCs become Notch independent by the end of maturation in the AGM region
.
Blood
.
2016
;
128
(
12
):
1567
-
1577
.
72.
Wang
X
,
Dong
F
,
Zhang
S
, et al
.
TGF-β1 negatively regulates the number and function of hematopoietic stem cells
.
Stem Cell Rep
.
2018
;
11
(
1
):
274
-
287
.
73.
Pinho
S
,
Marchand
T
,
Yang
E
,
Wei
Q
,
Nerlov
C
,
Frenette
PS
.
Lineage-biased hematopoietic stem cells are regulated by distinct niches
.
Dev Cell
.
2018
;
44
(
5
). 634.e4-641.e4.
You do not currently have access to this content.
Sign in via your Institution