Recent biochemical studies have led to the identification of abnormal spectrins in the erythrocytes of patients with hereditary pyropoikilocytosis (HPP) and hereditary elliptocytosis (HE). In this report we describe the biochemical characterization of the erythrocytes from a proband with severe HPP who is doubly heterozygous for two mutant spectrins (Sp): Sp alpha I/74 and a new, previously undetected, mutant of alpha-spectrin designated Sp alpha I/61. The proband's erythrocytes are unstable when exposed to 45 degrees C, and her membrane skeletons exhibit instability to shear stress. The content of spectrin in the proband's erythrocyte membranes is decreased to 75% of control values. The amount of spectrin dimers in crude 4 degrees C spectrin extracts is increased (58%) as compared with control values (6% +/- 4%). Limited tryptic digestion reveals a marked decrease in the normal 80,000-dalton alpha I domain, an increase in the 74,000-dalton fragment that is characteristic of Sp alpha I/74, and an increase in a series of new fragments of 61,000, 55,000, 21,000, and 16,000 daltons. Both parents are asymptomatic, but they have increased amounts of spectrin dimers (17% to 25%). Limited tryptic digestion of the father's spectrin demonstrates the presence of a previously identified abnormal spectrin (Sp alpha I/74) that is characterized by a decrease in content of the 80,000-dalton peptide and an increase in concentration of the 74,000-dalton peptide. The mother's spectrin digests show a decrease in the amount of 80,000-dalton peptide and the formation of new peptides of 61,000, 55,000, 21,000, and 16,000 daltons. The data indicate that this severe form of HPP is due to the inheritance of two distinct abnormal spectrins, Sp alpha I/74 and a new spectrin mutant, Sp alpha I/61.

This content is only available as a PDF.
Sign in via your Institution