The bone marrow of a patient with acute undifferentiated leukemia developed unique colonies after a 14-day culture in erythropoietin (EPO)-containing methylcellulose. The colonies consisted of 20 to 200 nonhemoglobinized large blast cells. Cytogenetic analysis of single colonies revealed hypotetraploid karyotypes with several marker chromosomes that were identical to those found in directly sampled bone marrow. The concurrently formed erythroid bursts showed only normal karyotypes. No leukemic colony formation was observed in other culture systems with either colony-stimulating activity (CSA) or phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM). The leukemic colonies exhibited a complete EPO-dose dependency similar to that of the patient's normal BFU-E. Although cytochemical and immunologic marker studies of the bone marrow cells failed to clarify the cell lineage of the leukemic cells with extraordinarily large cell size, ultrastructural study revealed erythroid differentiation such as siderosome formation in the cytoplasm and ferritin particles in the rhophecytosis invaginations. These findings indicate that the patient had poorly differentiated erythroid leukemia and that some of the clonogenic cells might respond to EPO in vitro. Corresponding to this biological feature, the leukemic cells were markedly decreased in number in response to repeated RBC transfusions, and partial remission was obtained. These observations suggest that erythroid leukemia distinct from erythroleukemia (M6) with a myeloblastic component, can develop as a minor entity of human acute leukemia.

This content is only available as a PDF.
Sign in via your Institution