Vitronectin (serum spreading factor), a major serum cell adhesion molecule, was compared with S-protein, the inhibitor of the C5–9 membrane attack complex. Data from the literature indicate that S- protein and vitronectin are alpha globulins with the same aminoterminal residues, amino acid compositions, and concentrations in normal plasma (150 to 250 micrograms/mL). Both proteins have been reported to interact with the thrombin-antithrombin complex. The cDNA sequences of vitronectin and S-protein were recently determined and found to be almost identical. In the present studies, rabbit-anti-S-protein and a monoclonal antibody to vitronectin both recognized 65,000- and 75,000- molecular weight (mol wt) polypeptides when plasma or serum proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose paper. The 65,000 and 75,000-mol wt polypeptides bound more avidly from serum than plasma to monoclonal anti-vitronectin or heparin coupled to agarose. The presence or absence of the polypeptides constituted a major difference between the heparin-binding proteins of serum and plasma. When complement- activated serum and unactivated serum were separated by gel filtration, vitronectin coeluted with C9 in high-mol-wt fractions of activated serum but not unactivated serum. Purified S-protein was recognized by the monoclonal antibody to vitronectin and promoted spreading of human skin fibroblasts. Both vitronectin and S-protein were degraded by thrombin. On the basis of immunological and functional, as well as biochemical, properties, therefore, S-protein and vitronectin are the same.

This content is only available as a PDF.
Sign in via your Institution