Abstract
Dysregulated NF-κB signaling appears to be particularly important in B-cell malignancies, with recurrent mutations identified within both the canonical and non-canonical NF-κB pathways, as well as in components of the B-cell receptor (BcR) and Toll-like receptor (TLR) signaling pathways. In chronic lymphocytic leukemia (CLL), although recurrent mutations have been identified in MYD88 (TLR signaling) and BIRC3 (non-canonical NF-κB pathway), their frequency is low (<3%) and hence the extent to which genetic aberrations may contribute to constitutional NF-κB activation remains largely unknown. To gain further insight into this issue, we designed a HaloPlex gene panel (Agilent Technologies) and performed targeted next-generation sequencing (NGS) (HiSeq 2000/Illumina) of 18 NF-κB genes in a discovery cohort of 124 CLL patients, intentionally biased towards poor-prognostic patients with either unmutated IGHV genes or high-risk genomic aberrations. Using a conservative cutoff of >10% for the mutant allele, we identified mutations (n=35) within 30/124 (24%) patients in 14/18 NF-κB genes analyzed. IκB genes, which encode for cytoplasmic inhibitor proteins, accounted for 20/35 (57%) mutations, with IκBε (encoded by NFKBIE) mutated in 8 patients; notably, 3/8 cases carried an identical 4bp deletion within exon 1 of NFKBIE. Prompted by these findings, we proceeded to validate our findings in an independent CLL cohort (n=168) using the same methodology as above and primarily focusing on cases with poor-prognostic features. We identified 30 mutations within 28 CLL patients in 11/18 NF-κB genes analyzed. Strikingly, 13/30 mutations were found within IκBε, with 10/13 patients carrying the same 4bp NFKBIE deletion. Notably, investigations into whether additional cases (within both the discovery and validation cohort) may harbor mutations of low clonal abundance (<10% mutant allele), led to the detection of the NFKBIE deletion in another 18 cases. Owing to the prevalence of this 4bp deletion within the NFKBIE gene, we developed a GeneScan assay and screened an additional 312 CLL cases. Collectively, 40/604 (6.6%) CLL patients were found to carry this frame-shift deletion within the NFKBIE gene, which is in line with a recent publication reporting that 10% of Binet stage B/C patients carried this mutation (Damm et al. Cancer Discovery 2014). Remarkably, the majority of these NFKBIE mutations (16/40) were found in a subgroup of patients that expressed highly similar or stereotyped BcRs and are known to have a particularly poor outcome, denoted as subset #1. This finding thus alludes to a subset-biased acquisition and/or selection of genomic aberrations, similar to what has been reported for subset #2 and SF3B1, perhaps as a result of particular modes of BcR/antigen interaction. We utilized proximity-ligation assays to test the functional impact of the NFKBIE deletion by investigating protein-protein interactions. This analysis revealed reduced interaction between the inhibitor IκBε and the transcription factor p65 in NFKBIE-deleted CLL cells; IκBε-knock-down shRNA experiments confirmed dysregulated apoptosis/NF-κB signaling. Finally, to assess whether the NFKBIE deletion could also be present in other B-cell malignancies, we screened 372 mature B-cell lymphoma cases using NGS or the GeneScan assay and found the deletion in 7/136 (5.1%) mantle cell lymphomas, 3/66 (4.5%) diffuse large B-cell lymphomas and 3/170 (1.8%) splenic marginal zone lymphomas. Taken together, our analysis revealed that inactivating mutations within the NFKBIE gene lead to NF-κB activation in CLL and potentially several other B-cell-derived malignancies. Considering the central role of BcR stimulation in the natural history of CLL, the functional loss of IκBε may significantly contribute to sustained CLL cell survival and shape the disease evolution. This novel data strongly indicates that components of the NF-κB signaling pathway may be prime targets for future targeted therapies not only in CLL but also other mature B-cell lymphomas.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.