Abstract 2617

Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood cell production throughout the lifetime. Appropriate control of HSC self-renewal is critical for the maintenance of hematopoietic homeostasis. Telomeres are nucleoprotein structures that cap the ends of eukaryotic chromosomes, and shelterin is required for the stability of telomeres. It is known that HSCs have telomerase activity and maintains telomere lengths longer than those of differentiated cells. The accelerated telomere erosion reduces the long-term repopulating capacity of HSCs in mutant mice, suggesting that keeping the telomerase activity and telomere structures is critical for the maintenance of HSCs.

On the other hand, it has been shown that the maintenance of cell cycle quiescence and self-renewal activity of HSCs largely depend on the interaction with the bone marrow niches. We previously reported that the interaction of Tie2 in HSCs with its ligand angiopietin-1 (Ang-1) in niche cells in bone marrow (BM) endosteum is critical for the maintenance of HSC quiescence (Arai 2004).

In this study, we found that Ang-1 upregulated the expression of protection of telomeres 1A (Pot1a) in side-population (SP) cells within LinSca-1+c-Kit+ (LSK) fraction, and further investigated the role of Pot1a in the regulation of HSCs. Pot1 has been proposed to form a part of the six-protein shelterin complex at telomeres. In mice, there are two genes encoding Pot1-related proteins, Pot1a and Pot1b. Knockout of Pot1a results in early embryonic lethality, whereas mice lacking Pot1b are alive and fertile, suggesting that Pot1a is essential for mouse development. We found that long-term HSC population, LSK-CD34 cells, expressed higher levels of Pot1a than short-term HSCs population, LSK-CD34+ cells, both in transcriptional and protein level. To analyze the function of Pot1a in the maintenance of HSCs, we transduced Pot1a in LSK cells and examined the colony formation and long-term BM reconstitution capacities. Overexpression of Pot1a increased the size of colonies compared to control. In addition, the number of high proliferative potential colony-forming cells (HPP-CFC) was increased by the overexpression of Pot1a after long-term culture. There was no significant difference in long-tern reconstitution capacity after the primary bone marrow transplantation (BMT) between Pot1a-transduced LSK cells and control. After the secondary BMT, however, Pot1a-transduced LSK cells showed higher reconstitution activity than control. Moreover, Pot1a-transduced cells increased the frequency of Ki67-negative cells after the primary and the secondary BMT compared with control. Next, we transduced Pot1a shRNA into LSK cells and examined the effect of Pot1a-knockdown on the regulation of HSCs. The number of colonies derived from Pot1a-knockdown LSK cells was significantly decreased compared to control. In addition, knockdown of Pot1a significantly reduced long-term reconstitution activity of LSK cells after BMT.

These data suggest that Pot1a plays a critical role in the maintenance of self-renewal activity and cell cycle quiescence of HSCs. We will also discuss about the dependence of the Pot1a function in HSCs on the telomerase activity.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution