Abstract 726

There are no suitable small animal models to evaluate human antibody-dependent cellular cytotoxicity (ADCC) in vivo, due to species incompatibilities, and it is a current crucial problem in the field of human ADCC research. To overcome this, we have established “humanized mice,” in which human immune cells from healthy individuals function as ADCC effector cells against allogeneic tumor cell lines, using NOD/Shi-scid, IL-2Rγnull (NOG) mice as recipients. In this model, the chimeric anti-CCR4 monoclonal antibody (mAb), KM2760, the Fc region of which is defucosylated to highly enhance ADCC, showed potent antitumor activity by human ADCC against CCR4 expressing tumor cell lines. In addition, KM2760 significantly increased the number of tumor-infiltrating CD56-positive NK cells which mediate ADCC, and reduced the number of tumor-infiltrating FOXP3-positive regulatory T (Treg) cells in the tumor bearing humanized mice. These observations indicate that KM2760 could be an ideal treatment modality for many different cancers, not only to directly kill CCR4-expressing tumor cells, but also to overcome the suppressive effect of Treg cells on the host immune response to tumor cells. Using this humanized mouse model, we now have the opportunity to perform more appropriate preclinical evaluation of many types of mAb based immunotherapy, although in the initial study, we could not completely exclude nonspecific allogeneic immune responses because target and effector cells were obtained from different individuals. In addition, susceptibility to immunotherapy is likely to be different in established cell lines and primary tumor cells isolated directly ex vivo from patients, with the latter certainly being more relevant for evaluation of immunotherapeutic agents. To overcome the subsequent problems, we have established a primary human tumor bearing NOG mouse model, in which autologous human immune cells are engrafted and mediate ADCC but in which endogenous murine cells are unable to mediate ADCC. In the present study, we used NOG mice bearing primary adult T-cell leukemia/lymphoma (ATLL) cells. We report significant antitumor activity in vivo associated with robust ADCC mediated by autologous effector cells from the same patients. The present study is the first to report a mouse model in which a potent antitumor effect of the therapeutic mAb against primary tumor cells is mediated by autologous human immune cells. Human autologous ADCC in mice in vivo was confirmed by the depletion of human immune cells before ATLL PBMC inoculation. In addition, NOG mice bearing primary ATLL cells presented features identical with patients with ATLL. In conclusion, this approach makes it possible to model the human immune system active in mAb based immunotherapy in vivo, and thus to perform more appropriate preclinical evaluations of novel therapeutic mAb. Furthermore, the potent ADCC mediated by defucosylated anti-CCR4 mAb, observed here in vivo in humanized mice, will be exploited in clinical trials in the near future.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution