Abstract 4110

Objective

To study the proliferative inhibition of imatinib, daunorubicin and bortezomib in two kinds of Ph(+) leukemia cell lines: chronic myelogenous leukemia cell line K562 expressing P210 protein and acute lymphoblastic leukemia cell line SUP-B15 expressing P190 protein.

Methods

(1) Cell proliferation with imatinib, daunorubicin and bortezomib for 72 hours was analyzed by the MTT assay and displayed by growth curve and IC50 value. (2) The change of bcr-abl gene mRNA levels after the 48 hours' intervention of imatinib (final concentration at 0μM, 0.35μM, 1 μM) was detected by reverse transcription polymerase chain reaction (RT-PCR).

Results

(1) The IC50 values of K562 and SUP-B15 cells inhibited by imatinib, daunorubicin and bortezomib for 72 hours was respectively 0.286±0.06 (μmol/L), 0.303±0.009 (μmol/L), 22.127±3.592 (nmol/L) and 1.387±0.180(μmol/L), 0.117±0.017 (μmol/L), 12.350±0.740 (nmol/L), which indicated that the K562 cell line was the more sensitive to imatinib than SUP-B15 cell line, whereas the SUP-B15 cell line had the more sensitivity to daunorubicin and bortezomib. (2) There was no change of bcr-abl gene expression after the 48 hours' intervention of imatinib in both cell lines.

Conclusion

(1) Imatinib, daunorubicin and bortezomib had good anti-cancer effect to Ph+ leukemia cells in vitro. What's more, the K562 cell was the more sensitive to imatinib and only imatinib will have good effect on chronic myelogenous leukemia. Whereas the SUP-B15 cell had the more sensitivity to daunorubicin and bortezomib and combining imatinib with daunorubicin or bortezomib, the effect will be better on Ph(+) acute lymphoblastic leukemia. (2) The short time intervention of imatinib had no effect on the bcr-abl gene expression and imatinib could need long time to show curative effect for the Ph+ leukemia.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution