Factor VIIIa serves as an essential cofactor for the factor IXa-catalyzed activation of factor X during the propagation phase of coagulation. The factor VIII procofactor is converted to factor VIIIa by thrombin-catalyzed proteolysis of three P1 positions at Arg372 (A1–A2 junction), Arg740 (A2–B junction), and Arg1689 (a3–A3 junction). Cleavage at Arg372 exposes a cryptic functional factor IXa-interactive site, while cleavage at Arg1689 liberates factor VIII from von Willebrand factor and contributes to factor VIIIa specific activity, thus making both sites essential for procofactor activation. However, cleavage at Arg740, separating the A2–B domainal junction, has not been rigorously studied. To evaluate thrombin cleavage at Arg740, we prepared and stably expressed two recombinant factor VIII mutants, Arg740His and Arg740Gln. Results from a previous study examining proteolysis at Arg372 revealed substantially reduced cleavage rates following substitution of that P1 Arg with His, whereas replacing Arg with Gln at residue 372 yielded an uncleavable bond at that site (Nogami et al., Blood, 2005). Specific activity values for the factor VIII Arg740His and Arg740Gln variants as measured using a one-stage clotting assay were approximately 50% and 18%, respectively, that of the wild type protein. SDS-PAGE and western blotting following a reaction of factor VIII Arg740His with thrombin showed reduced rates of cleavage at His740 as well as at Arg372 relative to the wild type. Alternatively, factor VIII Arg740Gln was resistant to thrombin cleavage at Gln740 and showed little, if any, cleavage at Arg372 over an extended time course. The mutant proteins assayed in a purified system by factor Xa generation showed a slight increase in activity for the Arg740His variant compared with the Arg740Gln variant in both the absence and presence of thrombin, and the activities for both variants were reduced compared with wild type factor VIII. These results suggest that cleavage at residue 740 affects subsequent cleavage at Arg372 and generation of the active cofactor factor VIIIa. Preliminary results obtained evaluating proteolysis of these mutants by factor Xa, which cleaves the same sites in factor VIII as thrombin, also revealed slow proteolysis at the P1 His and no cleavage at the P1 Gln. However, subsequent cleavage at Arg372 exhibited less dependence on initial cleavage at residue 740. These observations may explain the higher than predicted specific activity values obtained for the two variants and suggest a different mechanism of action for the two activating proteinases. Overall, these results support a model whereby cleavage of factor VIII heavy chain by thrombin is an ordered pathway with initial cleavage at Arg740 required to facilitate cleavage at the critical Arg372 site to yield the active cofactor.

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution