The ability of hematopoietic stem cells to tightly regulate the transition from relative quiescence and self-renewal to the transiently amplifying, differentiating progenitor fate is critical for HSC homeostasis as well as their regenerative capacity. We have recently described the diminished frequency and rapid exhaustion of HSC self-renewal capacity in the absence of the dominant negative helix-loop-helix molecule Id1. Furthermore, Id1 null HSCs have an increased rate of cycling, coupled with accelerated myeloid commitment both in vivo and in vitro. This is reflected in the elevated expression of myelo-erythroid transcription factors (c/EBPalpha and GATA1) within the Linc-kit+Sca-1+ population - “myeloid priming”. The major targets of Id1 mediated transcriptional repression are the ubiquitous E protein E2A as well as Ets transcription factors (Ets1 and Ets2). We hypothesized that the unrestrained activity of these and/or other targets of Id1 transcriptional repression leads to premature HSC commitment in Id1 null animals. Indeed, we show that HSC differentiation in culture can be delayed by transduction of E2A directed shRNA specifically in Id1 null, but not in wild-type Id1 expressing cells. This indicates an abnormal E2A activity in Id1 null HSCs that could be responsible for their increased differentiation status. To further define the transcriptional deregulation in Id1 null HSCs, we have used the Affymetrix microarray technology. We observed ~3 fold increased expression of the CDK inhibitor p21 in freshly isolated Id1 null HSCs and have confirmed this result by multiple independent qPCR measurements. The transcriptional induction of p21 by E2A as well as its repression by Id1 have been well established. Therefore, the observed p21 induction could be explained by the elevated level of E2A activity in HSCs in the absence of Id1 expression. To explore the functional significance of Id1 mediated p21 regulation in HSCs, we have generated p21/Id1 double knockout animals. Surprisingly, despite its reported function in restricting the cell cycle entry of normal HSCs, we show that in the context of Id1 loss, p21 expression is required for the accelerated HSC cycling, and unlike Id1 single null HSCs, p21/Id1 double knockout HSCs do not show accelerated myeloid differentiation in culture. Therefore, we propose that Id1 actively represses E2A activity in HSCs, as well as the induction of p21, which could be an important component of the HSC commitment program. Further studies will be presented defining the in vivo relevance of the Id1/p21 genetic interaction for HSC growth and differentiation.

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution