Considerable progress has been made in elucidating genetic and biologic risk factors for venous thromboembolism (VTE). Despite being able to identify heritable defects in a substantial proportion of patients with VTE, testing has not, in general, proven useful in management. Despite efforts to reduce inappropriate testing, it often falls to the hematologist to consult on patients having undergone thrombophilia testing. Through a series of cases, we discuss how D-dimer testing can be helpful in VTE recurrence risk stratification in younger women as well as how to approach patients with persistently elevated D-dimer levels in the absence of thrombosis. While elevated factor VIII coagulant activity levels are a significant risk factor for a first episode of VTE, its biologic basis is not fully understood, and studies have not shown it to be a useful predictor of recurrence. Abnormal results of genetic tests for methylene tetrahydrofolate reductase or plasminogen activator 1 promoter polymorphisms may be encountered, which carry little if any thrombotic risk and should never be ordered. We also discuss protein S deficiency, the most difficult of the hereditary thrombophilias to diagnose due to a wider “normal” range in the general population as compared with protein C, the presence of both free and bound forms in plasma, and the characteristics of the various assays in use. We also present a rare type of protein C deficiency that can be missed by functional assays using an amidolytic rather than a clotting end point.

Learning Objectives

  • Identify patients with venous thromboembolism in whom D-dimer can be useful for VTE risk stratification

  • Understand why an elevated FVIII:C level and testing for polymorphisms in PAI-1 and MTHFR lack clinical utility in the evaluation of VTE

  • Know the criteria for diagnosing clinically relevant protein S deficiency and a rare subtype of protein C deficiency

Thrombosis is a multicausal disease that is associated with acquired and inherited risk factors. Abnormalities have been identified in 5 genes that increase the risk of venous thromboembolism (VTE), but there is limited clinical utility in testing for the defects. Testing is also done for FVIII coagulant activity (FVIII:C) as well as variants in other genes for which the thrombotic risk is uncertain. The utility of measuring D-dimer has been evaluated for predicting recurrence risk in unprovoked VTE. Through a series of cases, we discuss the utility or lack thereof of measuring D-dimer and FVIII:C and testing for polymorphisms in the plasminogen activator 1 (SERPINE1) and methylene tetrahydrofolate reductase (MTHFR) genes. Issues in diagnosing deficiencies of protein C and protein S are also addressed.

CLINICAL CASE

A 22-year-old woman presented with chest pain and shortness of breath and was diagnosed with bilateral pulmonary emboli (PE) by computed tomography (CT) pulmonary angiography. She was started on apixaban and her symptoms resolved over several weeks. An etonogestrel implant, a progestin contraceptive that had been in place for 3 years, was removed per recommendation in the Food and Drug Administration (FDA) label. She then developed iron deficiency anemia due to menorrhagia. There was no family history of VTE; screening tests for thrombophilia were normal (Table 1). She completed 6 months of rivaroxaban and was referred regarding the need for long-term anticoagulation.

Table 1.

Screening laboratory testing for hereditary thrombophilia in patients with venous thromboembolism

Hereditary thrombophilia 
 Factor V Leiden mutation (using PCR-based assay) 
 Prothrombin G20210 mutation (using PCR-based assay) 
 Protein C deficiency (functional amidolytic assay) 
 Free protein S antigen 
 Antithrombin deficiency (heparin cofactor assay, save for patients on oral factor Xa inhibitors in whom antithrombin antigen is recommended to prevent “false normal” levels) 
Hereditary thrombophilia 
 Factor V Leiden mutation (using PCR-based assay) 
 Prothrombin G20210 mutation (using PCR-based assay) 
 Protein C deficiency (functional amidolytic assay) 
 Free protein S antigen 
 Antithrombin deficiency (heparin cofactor assay, save for patients on oral factor Xa inhibitors in whom antithrombin antigen is recommended to prevent “false normal” levels) 

PCR, polymerase chain reaction.

This case illustrates a common question as to whether to extend anticoagulation beyond 3 to 6 months. The first consideration is whether etonogestrel constitutes a transient risk factor for VTE. Despite the information on the Food and Drug Administration label, studies have not shown an increased risk in users of progestin-only contraceptives. A population-based study showed that the use of oral low-dose progesterone, levonorgestrel intrauterine devices, and levonorgestrel implants was not associated with an increased risk of VTE.1 

This patient therefore had unprovoked VTE, for which the risk of recurrent VTE after discontinuation of anticoagulation is 10% in the first year, 25% at 5 years, and 36% at 10 years.2  Men have a higher rate of recurrent VTE compared with women.2  While long-term anticoagulation is now recommended for many such patients, individualized decision-making is appropriate, taking into account its benefits and risks as well as patient preference.

D-dimer testing could be a useful risk stratification tool in this young woman (Table 2). Based on the PROLONG study, patients with a first unprovoked VTE who completed 3 months of anticoagulation had a VTE recurrence rate of 4.4% per year if a D-dimer test was negative 1 month after stopping warfarin.3  Women younger than 65 with non-hormone related VTE had a lower recurrence risk of 1.1%.4  In the subsequent DULCIS study, patients with persistently negative D-dimer tests at 15, 30, 60, and 90 days after discontinuation of anticoagulation had a VTE recurrence rate of 3% per year.5  The D-dimer Optimal Duration Study reported that women with a negative D-dimer while on anticoagulation and 1 month after discontinuation had a recurrence rate in the first year of 5.4%; the rate was 9.7% per year in men.6  The cumulative risk of recurrence at 5 years was 29.7% in men and 17.0% per year in women with non-estrogen-related VTE.7  A negative D-dimer result 1 month after discontinuing anticoagulation in this woman therefore translates to a recurrence rate of approximately 1.1% to 5.4% per year. With respect to bleeding, a meta-analysis of 14 randomized trials of indefinite anticoagulation for preventing recurrent VTE found annualized rates of major bleeding of 1.12% for direct oral anticoagulants and 1.74% for warfarin.8  The predictive value of D-dimer is diminished in men and older women (ages >65-70) who have high recurrence rates despite low D-dimer levels (ie, 7.5% per year in men, 6.6% per year in older women).4,7  Of note, the D-dimer “cutoff” (negative vs positive) varies among assays that have reported the risk of recurrent VTE; this should be considered in interpreting results.9 

Table 2.

D-dimer testing for recurrent VTE risk stratification

PopulationND-dimer assayCutoff valuesVTE recurrence rate after stopping anticoagulation (per year)
Negative D-dimerPositive D-dimer
PROLONG3,4  First unprovoked VTE 608 Clearview Simplify (whole blood; qualitative) Positive Overall: 4.4% (1st year)
0.4% (women, age <65)
6.7% (women, age >65)
5.1% (men, age <65)
8.2% (men, age >65) 
Overall: 10.9%
5.4% (women, age <65)
8.9% (women, age >65)
12.9% (men, age <65)
11.8% (men, age >65) 
DULCIS5  First unprovoked VTE or VTE with minor risk factors 1010 5 quantitative assays Predefined age- and sex-specific values Overall: 3.0% (median 1.93 years)
2.1% (age ≤70)
8.9% (age >70)
4.7% (men)
4.8% (women) 
Overall: 8.8%
14.3% (age ≤70)
12.5% (age >70)
10.0% (men)
20.5% (women) 
DODS6  First unprovoked VTE 410 Clearview Simplify® (whole blood; qualitative) Positive Overall: 6.6% (1st year)
9.7% (men)
5.4% (women, non-estrogen)
0% (women, estrogen) 
—- 
DODS extended follow-up7  First unprovoked VTE 293 Clearview Simplify® (whole blood; qualitative) Positive Overall: 5.1% (median 5 years)
7.5% (men)
3.8% (women, non-estrogen)
0.4% (women, estrogen) 
—- 
PopulationND-dimer assayCutoff valuesVTE recurrence rate after stopping anticoagulation (per year)
Negative D-dimerPositive D-dimer
PROLONG3,4  First unprovoked VTE 608 Clearview Simplify (whole blood; qualitative) Positive Overall: 4.4% (1st year)
0.4% (women, age <65)
6.7% (women, age >65)
5.1% (men, age <65)
8.2% (men, age >65) 
Overall: 10.9%
5.4% (women, age <65)
8.9% (women, age >65)
12.9% (men, age <65)
11.8% (men, age >65) 
DULCIS5  First unprovoked VTE or VTE with minor risk factors 1010 5 quantitative assays Predefined age- and sex-specific values Overall: 3.0% (median 1.93 years)
2.1% (age ≤70)
8.9% (age >70)
4.7% (men)
4.8% (women) 
Overall: 8.8%
14.3% (age ≤70)
12.5% (age >70)
10.0% (men)
20.5% (women) 
DODS6  First unprovoked VTE 410 Clearview Simplify® (whole blood; qualitative) Positive Overall: 6.6% (1st year)
9.7% (men)
5.4% (women, non-estrogen)
0% (women, estrogen) 
—- 
DODS extended follow-up7  First unprovoked VTE 293 Clearview Simplify® (whole blood; qualitative) Positive Overall: 5.1% (median 5 years)
7.5% (men)
3.8% (women, non-estrogen)
0.4% (women, estrogen) 
—- 

VTE, venous thromboembolism.

D-dimer levels on rivaroxaban and 1 month after discontinuation were 228  ng/mL and 235  ng/mL (reference range, 0-500  ng/mL FEU), respectively. Following discussion of the benefits and risks of long-term anticoagulation, she preferred to discontinue rivaroxaban. She was advised of the need for prompt medical attention for symptoms or signs of VTE and appropriate thromboprophylaxis in high-risk situations.

CLINICAL CASE

A 28-year-old woman was referred for a persistently elevated D-dimer. A level of 604  ng/mL was noted on presentation to the emergency department with chest pain; evaluation including CT pulmonary angiography and ultrasound of both lower extremities was negative for VTE. Despite being in good general health, follow-up testing showed persistently elevated D-dimer levels (>2,000  ng/mL).

D-dimer is a product of fibrin formation and degradation. In cases of suspected VTE, clinical assessment using validated tools (ie, Wells criteria) along with a negative D-dimer assay can exclude a diagnosis of VTE. When D-dimer is elevated and imaging is negative for VTE, it is unclear whether further evaluation should be done. Aside from VTE, elevated D-dimer levels are observed in a variety of physiologic and pathologic conditions, such as increased age, hormonal use, pregnancy, infections including COVID-19, cancer, inflammatory diseases, atrial fibrillation, acute aortic dissection, and disseminated intravascular coagulation.10,11  Clinical evaluation, including a detailed medical history, physical examination, routine laboratory tests (ie, complete blood count, basic metabolic profile, liver function tests), and age-appropriate cancer screening, are reasonable to identify such conditions.

D-dimer levels vary among healthy individuals, and a small percentage have very high levels.11  Studies of healthy populations have shown that elevated D-dimer levels are associated with an increased risk of VTE and overall mortality.12,13  These effects, however, are small and should not prompt extensive laboratory testing (eg, testing for thrombophilia) and imaging to exclude occult disorders that are not suspected clinically. It should be noted that interference with D-dimer assays can lead to spurious elevations (eg, presence of heterophilic antibodies).8 

Evaluation did not reveal any causes of a persistently elevated D-dimer level, and no further diagnostic testing was deemed necessary. The patient was reassured.

CLINICAL CASE

A 53-year-old woman was diagnosed with PE 4 weeks after sustaining a left fibula fracture while on an estrogen-containing oral contraceptive. She remained active following the fracture. Her mother had a history of recurrent VTE following surgeries after age 60. She was initiated on apixaban and the oral contraceptive was discontinued. She was seen by her primary care physician 2 weeks later, at which time she was asymptomatic. Laboratory testing for hereditary thrombophilia and APS was negative; FVIII:C was elevated at 234% (reference range, 57%-163%).

This hematology consultation resulted from an elevated FVIII:C found as part of a thrombophilia evaluation. Despite the Choosing Wisely campaign's recommendation against testing for thrombophilia in patients with VTE in the presence of transient risk factors, such testing and referrals are frequent.14,15 

An elevated FVIII:C, defined as the top decile of the population, has been identified in 25% of patients with a first unprovoked venous thrombotic event.16,17  Several factors affect FVIII:C, including von Willebrand factor level and ABO blood group. Individuals with non-O blood groups have von Willebrand factor and FVIII:C levels that are approximately 25% higher than type O.18  Genetics also plays a role in an individual's FVIII:C, and studies have identified familial clustering of high levels.19-21  However, the genetic basis and inheritance patterns have not been determined. Acute thrombosis can result in transient elevations in FVIII:C for up to 3 to 6 months. In some cases of venous thrombosis, the concomitant presence of an underlying inflammatory disorder is present in association with elevated C-reactive protein (CRP) and fibrinogen levels along with FVIII:C.17,22  Other factors such as body mass index, age, glucose, and triglyceride levels have been associated with elevations.19 

In the Leiden Thrombophilia Study, patients with FVIII:C >150 IU/dL had an increased risk of venous thrombosis compared with those with FVIII:C <100 IU/dL (OR 4.8, 95% CI 2.3-10.0).16  Levels were obtained at a median interval of 18 months following the diagnosis of deep venous thrombosis (DVT) and at least 3 months after anticoagulation was discontinued. The risk of VTE increased with higher FVIII:C in a dose-dependent fashion. This finding was confirmed by several subsequent studies.17,23,24  However, it is unclear whether an elevated FVIII:C has an impact on the risk of recurrent VTE. In a recent systematic review, 9 of 16 studies failed to identify FVIII:C as an independent risk factor for recurrence.25  Thus, it is not our practice to obtain FVIII:C in patients who undergo testing for thrombophilia.

When FVIII:C is obtained as part of thrombophilia testing, there are additional challenges with respect to its interpretation. FVIII:C is generally measured using a one-stage clot-based assay; elevated FVIII:C measured by chromogenic assay and ELISA have also been associated with thrombosis.26,27  There is potential for interference in one-stage FVIII:C assays by heparins and lupus anticoagulants.28  Elevated FVIII:C is often defined as above the 90th percentile of the population.25  However, there is uncertainty regarding what cutoff values should be considered “elevated,” since cutoffs were >150% in the Leiden Study and >234% in the Vienna study.16,29  Standardization of such values with the applicable population is needed.16,29 

Based on the provoked nature of the PE, this patient was continued on apixaban for 3 months. In this case, FVIII:C was found to be elevated 2 weeks after she was diagnosed with PE. Even if persistently elevated, its role in predicting recurrent VTE is uncertain. Thus the elevated FVIII:C should not affect the duration of anticoagulation.

CLINICAL CASE

A 42-year-old woman sustained ischemic strokes at ages 17 and 41. CT and magnetic resonance imaging showed old infarcts, but there was no evidence of vascular disease. Echocardiography (both transthoracic and transesophageal) did not show a patent foramen ovale, and cardiac telemetry was negative. She had no cardiovascular risk factors but developed PE following delivery at age 28 that was treated with 6 months of warfarin. There was no family history of thrombosis, and she did not have hereditary thrombophilia or markers of APS. Analysis of the PAI-1 gene showed heterozygosity for 4G/5G in the promoter. Her current therapy includes aspirin and a statin. Hematology is consulted regarding the significance of the 4G/5G variant and the role of anticoagulation for preventing recurrent stroke.

This case highlights one of several tests that are ordered by some practitioners to evaluate patients with arterial and/or venous thrombosis as well as women with recurrent adverse fetal outcomes: these include SERPINE1 4G/5G, MTHFR polymorphisms, homocysteine levels, and a common F13A gene polymorphism resulting in Factor XIII Val34Leu. However, the association of these laboratory abnormalities with an increased or decreased risk of thrombosis is minimal or relatively small.

The 4G/5G polymorphism in the SERPINE1 is associated with an increased plasma level of PAI-1.30  As compared with the 5G allele, carriers of the 4G allele had marginally increased risks of VTE and myocardial infarction (odds ratio, ∼1.2).31-33  However, there is no evidence of an increased risk of stroke.31,34  Some studies have shown a reduced risk in individuals carrying the 4G/4G genotype.35  The MTHFR polymorphisms, C677T and A1298C, are common, with heterozygosity and homozygosity in 40% to 60% and 16% of the population, respectively.36,37  These polymorphisms decrease function of the MTHFR enzyme, leading to elevated homocysteine levels; this effect is only relevant in folate-depleted states, which are rare in countries where folate-fortified food is mandated.38  Randomized trials have shown that lowering homocysteine levels with vitamin B6, B12, and folic acid supplementation does not prevent arterial thrombosis, VTE, or mortality.39-43 MTHFR polymorphisms are not associated with an increased risk of VTE or arterial thrombosis; testing for them or measuring homocysteine levels should not be done to evaluate for thrombophilia.37,44 

The patient's history of PE was provoked as it occurred in the postpartum period; there is no evidence that anticoagulation will prevent recurrent stroke in this patient as a consequence of carrying the SERPINE1 4G allele. The situation would be no different if she had 1 of the 5 hereditary thrombophilias (Table 1).

CLINICAL CASE

A 31-year-old woman is referred with a history of 2 first-trimester miscarriages but no history of thrombosis. Her mother had multiple venous thrombotic events following an initial DVT during pregnancy; her maternal grandmother and great-grandmother also had VTE during pregnancy. The patient's protein C activity and antigen levels were 55% (reference range, 70%-180%) and 111%, respectively. At her consultation with you regarding potential risks during a future pregnancy, protein C activity was 97%.

This patient had discrepant protein C activity levels measured by different laboratories. There are several potential explanations besides laboratory error or preanalytic factors. Protein C activity levels can be measured using either amidolytic (chromogenic) or clot-based assays (Table 3). Generally, amidolytic tests are preferred due to lower variability.45,46  Clot-based assays for protein C are subject to interference by lupus anticoagulants or anticoagulants. The levels of protein C can also be affected by several conditions (Tables 3 and 4).47  Another possibility is that the patient may have a rare type 2B variant of protein C deficiency with abnormalities in calcium, phospholipid, or cofactor binding.48  This type of protein C deficiency is only detected using the clot-based activity assay.

Table 3.

Diagnostic considerations in protein C deficiency and protein S deficiency

Protein C deficiencyProtein S deficiency
Genetic mutation PROC gene PROS1 gene 
Types of deficiency Type 1 quantitative defect, low PC antigen and activity
Type 2 qualitative defect, normal PC antigen but low activity
• Type 2A
• Type 2B—not detected by amidolytic assays 
Type 1 quantitative defect; low total and free PS antigen, low activity
Type 2 qualitative defect; normal total and free PS, low activity
Type 3 selective quantitative defect; normal total PS, low free PS antigen, low activity 
Activity assays PC activity:
• Clotting end point
• Amidolytic end point (uses a chromogenic substrate) 
PS activity:
• Clotting end point 
Antigen assays PC antigen: immunoassays
• Helps distinguish deficiency type, not required for diagnosis 
PS antigen: immunoassays
Free PS antigen—ELISA, latex immunoassays; initial test for diagnosis
Total PS antigen—helps distinguish deficiency type, not required for diagnosis 
Diagnostic threshold PC activity <65%-70% Free PS antigen
<33% (in general population)
<40%-50% (with patients with prior VTE or strong family history) 
Laboratory interference Clot-based assays: lupus anticoagulants, heparins, direct thrombin inhibitor, oral factor Xa inhibitors, elevated FVIII:C, FVL mutation, and hyperlipidemia Clot-based assays: lupus anticoagulants, heparins, direct thrombin inhibitor, oral factor Xa inhibitors, elevated FVIII, FVL mutation, and PC deficiency 
Conditions with acquired deficiency Liver disease, DIC, vitamin K antagonist, vitamin K deficiency, recent surgery or trauma, acute inflammatory illnesses, oral contraceptive pills, or acquired antibodies Liver disease, DIC, vitamin K antagonist, vitamin K deficiency, nephrotic syndrome, L-asparaginase therapy, oral contraceptive pills, pregnancy, or acquired antibodies 
Protein C deficiencyProtein S deficiency
Genetic mutation PROC gene PROS1 gene 
Types of deficiency Type 1 quantitative defect, low PC antigen and activity
Type 2 qualitative defect, normal PC antigen but low activity
• Type 2A
• Type 2B—not detected by amidolytic assays 
Type 1 quantitative defect; low total and free PS antigen, low activity
Type 2 qualitative defect; normal total and free PS, low activity
Type 3 selective quantitative defect; normal total PS, low free PS antigen, low activity 
Activity assays PC activity:
• Clotting end point
• Amidolytic end point (uses a chromogenic substrate) 
PS activity:
• Clotting end point 
Antigen assays PC antigen: immunoassays
• Helps distinguish deficiency type, not required for diagnosis 
PS antigen: immunoassays
Free PS antigen—ELISA, latex immunoassays; initial test for diagnosis
Total PS antigen—helps distinguish deficiency type, not required for diagnosis 
Diagnostic threshold PC activity <65%-70% Free PS antigen
<33% (in general population)
<40%-50% (with patients with prior VTE or strong family history) 
Laboratory interference Clot-based assays: lupus anticoagulants, heparins, direct thrombin inhibitor, oral factor Xa inhibitors, elevated FVIII:C, FVL mutation, and hyperlipidemia Clot-based assays: lupus anticoagulants, heparins, direct thrombin inhibitor, oral factor Xa inhibitors, elevated FVIII, FVL mutation, and PC deficiency 
Conditions with acquired deficiency Liver disease, DIC, vitamin K antagonist, vitamin K deficiency, recent surgery or trauma, acute inflammatory illnesses, oral contraceptive pills, or acquired antibodies Liver disease, DIC, vitamin K antagonist, vitamin K deficiency, nephrotic syndrome, L-asparaginase therapy, oral contraceptive pills, pregnancy, or acquired antibodies 

DIC, disseminated intravascular coagulation; PC, protein C; PS, protein S.

Table 4.

The effects of oral factor Xa inhibitors and oral thrombin inhibitors on tests for hereditary thrombophilia

ThrombophiliaTestsEffect on test
Factor V Leiden mutation PCR Not affected 
Prothrombin G20210A mutation PCR Not affected 
Protein C deficiency Protein C activity: clot-based assays Interference by oral factor Xa inhibitors and dabigatran 
 Protein C activity: amidolytic assays Not affected 
 Protein C antigen assays Not affected 
Protein S deficiency Protein S activity: clot-based assays Interference by oral factor Xa inhibitors and dabigatran 
 Protein S antigen assays Not affected 
Antithrombin deficiency Antithrombin activity: anti-Xa–based assays Interference by oral factor Xa inhibitors 
 Antithrombin activity: anti-IIa–based assays Interference by dabigatran 
 Antithrombin antigen assays Not affected 
ThrombophiliaTestsEffect on test
Factor V Leiden mutation PCR Not affected 
Prothrombin G20210A mutation PCR Not affected 
Protein C deficiency Protein C activity: clot-based assays Interference by oral factor Xa inhibitors and dabigatran 
 Protein C activity: amidolytic assays Not affected 
 Protein C antigen assays Not affected 
Protein S deficiency Protein S activity: clot-based assays Interference by oral factor Xa inhibitors and dabigatran 
 Protein S antigen assays Not affected 
Antithrombin deficiency Antithrombin activity: anti-Xa–based assays Interference by oral factor Xa inhibitors 
 Antithrombin activity: anti-IIa–based assays Interference by dabigatran 
 Antithrombin antigen assays Not affected 

PCR, polymerase chain reaction.

The low functional protein C level was done by a commercial laboratory that uses a clotting end point, while the normal level obtained by our laboratory used an amidolytic assay. Repeat testing using an assay with a clotting end point returned low at 62%; the patient is therefore likely to have heterozygous protein C deficiency. Arrangements were made to have sequencing done to determine the mutation in the protein C gene. Regarding the implications of protein C deficiency on recurrent miscarriage, an association has not been established,49,50  nor is there evidence for a higher live birth rate in women treated with antepartum low-molecular-weight heparin.51  However, based on her having protein C deficiency and a family history of VTE, postpartum thromboprophylaxis is recommended per the ASH Guidelines.52  This, however, is an individualized decision that the patient and her physicians need to make based on her thrombotic and bleeding risk following delivery.

CLINICAL CASE

A 34-year-old G3P0 woman was referred with a history of 2 first-trimester miscarriages but no personal or family history of thrombosis. As part of the evaluation for in vitro fertilization, protein S activity was 57% (reference range, >64%). She was started on enoxaparin 40  mg subcutaneously daily on the day following embryo transfer. Protein S activity at 4 months' gestation was lower at 31%. She is seen regarding the need for continued prophylaxis with low-molecular-weight heparin.

This case highlights the challenge encountered in accurately diagnosing clinically relevant protein S deficiency (ie, associated with an increased risk for VTE). Protein S circulates in the blood in 2 forms, 60% bound to C4b-binding protein and 40% free.53  Tests for protein S deficiency include activity assays as well as free and total protein S antigen (Table 3). Free protein S antigen is the preferred method due to its lower variability and correlation with risk of VTE.54  In a case-control study, levels of free protein S had to be <33% (<0.10th percentile) to indicate an increased risk of venous thrombosis. No association was observed with total protein S antigen, even at levels <53% (<0.20th percentile).54  As with protein C, protein S levels are influenced by many factors that must be considered in interpreting results (Table 3).

This patient's mild reduction in protein S activity at baseline has no clinical significance, and the level of 31% was due to being 4 months pregnant. Hence it was recommended that prophylactic anticoagulation be discontinued; the patient and her obstetrician agreed with this plan.

Thita Chiasakul has nothing to declare.

Kenneth A. Bauer has served as a consultant to Abbott and Sanofi.

Thita Chiasakul: nothing to disclose.

Kenneth A. Bauer: nothing to disclose.

1.
Tepper
NK
,
Whiteman
MK
,
Marchbanks
PA
, et al.
Progestin-only contraception and thromboembolism: A systematic review
.
Contraception
.
2016
;
94
(
6
):
678
-
700
.
doi:10.1055/s-0032-1319770
.
2.
Khan
F
,
Rahman
A
,
Carrier
M
, et al
;
MARVELOUS Collaborators
.
Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: systematic review and meta-analysis
.
BMJ
.
2019
;
366
:
l4363
.
doi:10.1136/bmj.l4363
.
3.
Palareti
G
,
Cosmi
B
,
Legnani
C
, et al
;
PROLONG Investigators
.
D-dimer testing to determine the duration of anticoagulation therapy
.
N Engl J Med
.
2006
;
355
(
17
):
1780
-
1789
.
doi:10.1056/NEJMoa054444
.
4.
Cosmi
B
,
Legnani
C
,
Tosetto
A
, et al
;
Prolong Investigators
.
Sex, age and normal post-anticoagulation D-dimer as risk factors for recurrence after idiopathic venous thromboembolism in the Prolong study extension
.
J Thromb Haemost
.
2010
;
8
(
9
):
1933
-
1942
.
doi:10.1111/j.1538-7836.2010.03955.x
.
5.
Palareti
G
,
Cosmi
B
,
Legnani
C
, et al
;
DULCIS (D-dimer and ULtrasonography in Combination Italian Study) Investigators
.
D-dimer to guide the duration of anticoagulation in patients with venous thromboembolism: a management study
.
Blood
.
2014
;
124
(
2
):
196
-
203
.
doi:10.1182/blood-2014-01-548065
.
6.
Kearon
C
,
Spencer
FA
,
O'Keeffe
D
, et al
;
D-dimer Optimal Duration Study Investigators
.
D-dimer testing to select patients with a first unprovoked venous thromboembolism who can stop anticoagulant therapy: a cohort study
.
Ann Intern Med
.
2015
;
162
(
1
):
27
-
34
.
doi:10.7326/M14-1275
.
7.
Kearon
C
,
Parpia
S
,
Spencer
FA
, et al.
Long-term risk of recurrence in patients with a first unprovoked venous thromboembolism managed according to D-dimer results; a cohort study
.
J Thromb Haemost
.
2019
;
17
(
7
):
1144
-
1152
.
doi:10.1111/jth.14458
.
8.
Khan
F
,
Tritschler
T
,
Kimpton
M
, et al
;
MAJESTIC Collaborators
.
Long-term risk for major bleeding during extended oral anticoagulant therapy for first unprovoked venous thromboembolism: a systematic review and meta-analysis
.
Ann Intern Med
.
2021
;
174
(
10
):
1420
-
1429
.
doi:10.7326/M21-1094
.
9.
Kearon
C
,
Parpia
S
,
Spencer
FA
, et al.
D-dimer levels and recurrence in patients with unprovoked VTE and a negative qualitative D-dimer test after treatment
.
Thromb Res
.
2016
;
146
:
119
-
125
.
doi:10.1016/j.thromres.2016.06.023
.
10.
Weitz
JI
,
Fredenburgh
JC
,
Eikelboom
JW
.
A test in context: D-dimer
.
J Am Coll Cardiol
.
2017
;
70
(
19
):
2411
-
2420
.
doi:10.1016/j.jacc.2017.09.024
.
11.
Hughes
R
,
Thomson
K
,
Hopkins
R
, et al.
Determinants of plasma D-dimer levels in a traveling population
.
J Thromb Haemost
.
2005
;
3
(
11
):
2445
-
2448
.
doi:10.1111/j.1538-7836.2005.01568.x
.
12.
Di Castelnuovo
A
,
de Curtis
A
,
Costanzo
S
, et al
;
MOLI-SANI Project Investigators
.
Association of D-dimer levels with all-cause mortality in a healthy adult population: findings from the MOLI-SANI study
.
Haematologica
.
2013
;
98
(
9
):
1476
-
1480
.
doi:10.3324/haematol.2012.083410
.
13.
Cushman
M
,
Folsom
AR
,
Wang
L
, et al.
Fibrin fragment D-dimer and the risk of future venous thrombosis
.
Blood
.
2003
;
101
(
4
):
1243
-
1248
.
doi:10.1182/blood-2002-05-1416
.
14.
Hicks
LK
,
Bering
H
,
Carson
KR
, et al.
The ASH Choosing Wisely® campaign: five hematologic tests and treatments to question
.
Blood
.
2013
;
122
(
24
):
3879
-
3883
.
doi:10.1182/blood-2013-07-518423
.
15.
Hilal
T
,
Munoz
J.
Choosing Wisely® in Hematology: have we made a difference?
Curr Hematol Malig Rep
.
2020
;
15
(
4
):
241
-
247
.
doi:10.1007/s11899-020-00593-2
.
16.
Koster
T
,
Blann
AD
,
Briët
E
,
Vandenbroucke
JP
,
Rosendaal
FR
.
Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis
.
Lancet
.
1995
;
345
(
8943
):
152
-
155
.
doi:10.1016/s0140-6736(95)90166-3
.
17.
O'Donnell
J
,
Tuddenham
EG
,
Manning
R
,
Kemball-Cook
G
,
Johnson
D
,
Laffan
M.
High prevalence of elevated factor VIII levels in patients referred for thrombophilia screening: role of increased synthesis and relationship to the acute phase reaction
.
Thromb Haemost
.
1997
;
77
(
5
):
825
-
828
.
doi:10.1055/s-0038-1656061
.
18.
O'Donnell
J
,
Laffan
MA
.
The relationship between ABO histo-blood group, factor VIII and von Willebrand factor
.
Transfus Med
.
2001
;
11
(
4
):
343
-
351
.
doi:10.1046/j.1365-3148.2001.00315.x
.
19.
Kamphuisen
PW
,
Eikenboom
JC
,
Bertina
RM
.
Elevated factor VIII levels and the risk of thrombosis
.
Arterioscler Thromb Vasc Biol
.
2001
;
21
(
5
):
731
-
738
.
doi:10.1161/01.atv.21.5.731
.
20.
Bank
I
,
Libourel
EJ
,
Middeldorp
S
, et al.
Elevated levels of FVIII:C within families are associated with an increased risk for venous and arterial thrombosis
.
J Thromb Haemost
.
2005
;
3
(
1
):
79
-
84
.
doi:10.1111/j.1538-7836.2004.01033.x
.
21.
Lijfering
WM
,
Brouwer
J-L
,
Veeger
N-J
, et al.
Selective testing for thrombophilia in patients with first venous thrombosis: results from a retrospective family cohort study on absolute thrombotic risk for currently known thrombophilic defects in 2479 relatives
.
Blood
.
2009
;
113
(
21
):
5314
-
5322
.
doi:10.1182/blood-2008-10-184879
.
22.
Kamphuisen
PW
,
Eikenboom
JC
,
Vos
HL
, et al.
Increased levels of factor VIII and fibrinogen in patients with venous thrombosis are not caused by acute phase reactions
.
Thromb Haemost
.
1999
;
81
(
5
):
680
-
683
.
doi:10.1055/s-0037-1614553
.
23.
Bloemenkamp
KW
,
Helmerhorst
FM
,
Rosendaal
FR
,
Vandenbroucke
JP
.
Venous thrombosis, oral contraceptives and high factor VIII levels
.
Thromb Haemost
.
1999
;
82
(
3
):
1024
-
1027
.
doi:10.1055/s-0037-1614323
.
24.
Kraaijenhagen
RA
,
in't Anker
PS
,
Koopman
MM
, et al.
High plasma concentration of factor VIIIc is a major risk factor for venous thromboembolism
.
Thromb Haemost
.
2000
;
83
(
1
):
5
-
9
.
doi:10.1055/s-0037-1613747
.
25.
Bosch
A
,
Uleryk
E
,
Avila
L.
Role of factor VIII, IX, and XI in venous thrombosis recurrence risk in adults and children: a systematic review
.
Res Pract Thromb Haemost
.
2023
;
7
(
2
):
100064
.
doi:10.1016/j.rpth.2023.100064
.
26.
Timp
JF
,
Braekkan
SK
,
Lijfering
WM
, et al.
Prediction of recurrent venous thrombosis in all patients with a first venous thrombotic event: the Leiden Thrombosis Recurrence Risk Prediction model (L-TRRiP)
.
PLoS Med
.
2019
;
16
(
10
):
e1002883
.
doi:10.1371/journal.pmed.1002883
.
27.
Legnani
C
,
Mattarozzi
S
,
Cini
M
,
Cosmi
B
,
Favaretto
E
,
Palareti
G.
Abnormally short activated partial thromboplastin time values are associated with increased risk of recurrence of venous thromboembolism after oral anticoagulation withdrawal
.
Br J Haematol
.
2006
;
134
(
2
):
227
-
232
.
doi:10.1111/j.1365-2141.2006.06130.x
.
28.
Chandler
WL
,
Ferrell
C
,
Lee
J
,
Tun
T
,
Kha
H.
Comparison of three methods for measuring factor VIII levels in plasma
.
Am J Clin Pathol
.
2003
;
120
(
1
):
34
-
39
.
doi:10.1309/C8T8-YNB4-G3W4-5PRF
.
29.
Kyrle
PA
,
Minar
E
,
Hirschl
M
, et al.
High plasma levels of factor VIII and the risk of recurrent venous thromboembolism
.
N Engl J Med
.
2000
;
343
(
7
):
457
-
462
.
doi:10.1056/NEJM200008173430702
.
30.
Eriksson
P
,
Kallin
B
,
van't Hooft
FM
,
Båvenholm
P
,
Hamsten
A.
Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction
.
Proc Natl Acad Sci U S A
.
1995
;
92
(
6
):
1851
-
1855
.
doi:10.1073/pnas.92.6.1851
.
31.
Tsantes
A
,
Bagos
P
,
Rapti
E
, et al.
Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and venous thrombosis: a meta-analysis
.
Thromb Haemost
.
2007
;
97
(
06
):
907
-
913
.
doi:10.1160/th06-12-0745
.
32.
Zhang
Q
,
Jin
Y
,
Li
X
, et al.
Plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphisms and risk of venous thromboembolism - a meta-analysis and systematic review
.
Vasa
.
2020
;
49
(
2
):
141
-
146
.
doi:10.1024/0301-1526/a000839
.
33.
Boekholdt
SM
,
Bijsterveld
NR
,
Moons
AH
,
Levi
M
,
Büller
HR
,
Peters
RJ
.
Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction: a systematic review
.
Circulation
.
2001
;
104
(
25
):
3063
-
3068
.
doi:10.1161/hc5001.100793
.
34.
Attia
J
,
Thakkinstian
A
,
Wang
Y
, et al.
The PAI-1 4G/5G gene polymorphism and ischemic stroke: an association study and meta-analysis
.
J Stroke Cerebrovasc Dis
.
2007
;
16
(
4
):
173
-
179
.
doi:10.1016/j.jstrokecerebrovasdis.2007.03.002
.
35.
Saidi
S
,
Slamia
LB
,
Mahjoub
T
,
Ammou
SB
,
Almawi
WY
.
Association of PAI-1 4G/5G and -844G/A gene polymorphism and changes in PAI-1/tPA levels in stroke: a case-control study
.
J Stroke Cerebrovasc Dis
.
2007
;
16
(
4
):
153
-
159
.
doi:10.1016/j.jstrokecerebrovasdis.2007.02.002
.
36.
Cortese
C
,
Motti
C.
MTHFR gene polymorphism, homocysteine and cardiovascular disease
.
Public Health Nutr
.
2001
;
4
(
2B
):
493
-
497
.
doi:10.1079/phn2001159
.
37.
Deloughery
TG
,
Hunt
BJ
,
Barnes
GD
,
Connors
JM
;
WTD Steering Committee
.
A call to action: MTHFR polymorphisms should not be a part of inherited thrombophilia testing
.
Res Pract Thromb Haemost
.
2022
;
6
(
4
):
e12739
.
doi:10.1002/rth2.12739
.
38.
Ospina-Romero
M
,
Cannegieter
SC
,
den Heijer
M
,
Doggen
CJM
,
Rosendaal
FR
,
Lijfering
WM
.
Hyperhomocysteinemia and risk of first venous thrombosis: the influence of (unmeasured) confounding factors
.
Am J Epidemiol
.
2018
;
187
(
7
):
1392
-
1400
.
doi:10.1093/aje/kwy004
.
39.
Bønaa
KH
,
Njølstad
I
,
Ueland
PM
, et al
;
NORVIT Trial Investigators
.
Homocysteine lowering and cardiovascular events after acute myocardial infarction
.
N Engl J Med
.
2006
;
354
(
15
):
1578
-
1588
.
doi:10.1056/NEJMoa055227
.
40.
Lonn
E
,
Yusuf
S
,
Arnold
MJ
, et al
;
Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators
.
Homocysteine lowering with folic acid and B vitamins in vascular disease
.
N Engl J Med
.
2006
;
354
(
15
):
1567
-
1577
.
doi:10.1056/NEJMoa060900
.
41.
den Heijer
M
,
Willems
HP
,
Blom
HJ
, et al.
Homocysteine lowering by B vitamins and the secondary prevention of deep vein thrombosis and pulmonary embolism: a randomized, placebo-controlled, double-blind trial
.
Blood
.
2007
;
109
(
1
):
139
-
144
.
doi:10.1182/blood-2006-04-014654
.
42.
Ray
JG
,
Kearon
C
,
Yi
Q
,
Sheridan
P
,
Lonn
E
;
Heart Outcomes Prevention Evaluation 2 (HOPE-2) Investigators
.
Homocysteine-lowering therapy and risk for venous thromboembolism: a randomized trial
.
Ann Intern Med
.
2007
;
146
(
11
):
761
-
767
.
doi:10.7326/0003-4819-146-11-200706050-00157
.
43.
Clarke
R
,
Halsey
J
,
Lewington
S
, et al
;
B-Vitamin Treatment Trialists' Collaboration
.
Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: meta-analysis of 8 randomized trials involving 37 485 individuals
.
Arch Intern Med
.
2010
;
170
(
18
):
1622
-
1631
.
doi:10.1001/archinternmed.2010.348
.
44.
Bezemer
ID
,
Doggen
CJ
,
Vos
HL
,
Rosendaal
FR
.
No association between the common MTHFR 677C->T polymorphism and venous thrombosis: results from the MEGA study
.
Arch Intern Med
.
2007
;
167
(
5
):
497
-
501
.
doi:10.1001/archinte.167.5.497
.
45.
Meijer
P
,
Kluft
C
,
Haverkate
F
,
De Maat
MP
.
The long-term within- and between-laboratory variability for assay of antithrombin, and proteins C and S: results derived from the external quality assessment program for thrombophilia screening of the ECAT Foundation
.
J Thromb Haemost
.
2003
;
1
(
4
):
748
-
753
.
doi:10.1046/j.1538-7836.2003.00141.x
.
46.
Cunningham
MT
,
Olson
JD
,
Chandler
WL
, et al.
External quality assurance of antithrombin, protein C, and protein S assays: results of the College of American Pathologists proficiency testing program in thrombophilia
.
Arch Pathol Lab Med
.
2011
;
135
(
2
):
227
-
232
.
doi:10.5858/135.2.227
.
47.
Khor
B
,
Van Cott
EM
.
Laboratory tests for protein C deficiency
.
Am J Hematol
.
2010
;
85
(
6
):
440
-
442
.
doi:10.1002/ajh.21679
.
48.
Cooper
PC
,
Pavlova
A
,
Moore
GW
,
Hickey
KP
,
Marlar
RA
.
Recommendations for clinical laboratory testing for protein C deficiency, for the subcommittee on plasma coagulation inhibitors of the ISTH
.
J Thromb Haemost
.
2020
;
18
(
2
):
271
-
277
.
doi:10.1111/jth.14667
.
49.
Bennett
SA
,
Bagot
CN
,
Arya
R.
Pregnancy loss and thrombophilia: the elusive link
.
Br J Haematol
.
2012
;
157
(
5
):
529
-
542
.
doi:10.1111/j.1365-2141.2012.09112.x
.
50.
Robertson
L
,
Wu
O
,
Langhorne
P
, et al
;
Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) Study
.
Thrombophilia in pregnancy: a systematic review
.
Br J Haematol
.
2006
;
132
(
2
):
171
-
196
.
doi:10.1111/j.1365-2141.2005.05847.x
.
51.
Quenby
S
,
Booth
K
,
Hiller
L
, et al
;
ALIFE2 Block Writing Committee; ALIFE2 Investigators
.
Heparin for women with recurrent miscarriage and inherited thrombophilia (ALIFE2): an international open-label, randomised controlled trial
.
Lancet
.
2023
;
402
(
10395
):
54
-
61
.
doi:10.1016/S0140-6736(23)00693-1
.
52.
Bates
SM
,
Rajasekhar
A
,
Middeldorp
S
, et al
.
American-Society of Hematology 2018 guidelines for management of venous thromboembolism: venous thromboembolism in the context of pregnancy
.
Blood Adv
.
2018
;
2
(
22
):
3317
-
3359
.
doi:10.1055/s-0031-1276584
.
53.
Dahlbäck
B.
C4b-binding protein: a forgotten factor in thrombosis and hemostasis
.
Semin Thromb Hemost
.
2011
;
37
(
4
):
355
-
361
.
doi:10.1055/s-0031-1276584
.
54.
Pintao
MC
,
Ribeiro
DD
,
Bezemer
ID
, et al.
Protein S levels and the risk of venous thrombosis: results from the MEGA case-control study
.
Blood
.
2013
;
122
(
18
):
3210
-
3219
.
doi:10.1182/blood-2013-04-499335
.