• AMPK plays a key role in driving both and oxidative and glycolytic metabolism in T cells during graft-versus-host disease (GVHD)

  • Absence of AMPK simultaneously impairs both glycolytic enzyme activity, most notably by aldolase, and interferon gamma (IFNγ) production

Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process involving the cellular energy sensor AMP-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia (GVL) effects. In the current studies, murine AMPK KO T cells decreased oxidative metabolism at early timepoints post-transplant and lacked a compensatory increase in glycolysis following inhibition of the electron transport chain. Immunoprecipitation using an antibody specific to phosphorylated targets of AMPK determined that AMPK modified interactions of several glycolytic enzymes including aldolase, enolase, pyruvate kinase M (PKM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and enzyme assays indicated impaired aldolase and GAPDH activity in AMPK KO T cells. Importantly, these changes in glycolysis correlated with both an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma (IFNγ) upon antigenic re-stimulation and a decrease in the total number of donor CD4 T cells recovered at later time points post-transplant. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and following expansion in vivo. GVHD results also mirrored those of the murine model, with reduced CD4/CD8 ratios and a significant improvement in disease severity. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells and endorse further study of AMPK inhibition as a potential clinical target for future GVHD therapies.

This content is only available as a PDF.
Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.

Article PDF first page preview

Article PDF first page preview

Supplemental data