Chronic lymphocytic leukemia (CLL) patients who are refractory to both Bruton's tyrosine kinase and B-cell/CLL lymphoma 2 (BCL2) inhibitors face a significant treatment challenge, with limited and short-lasting disease control options. This underscores the urgent need for novel therapeutic strategies. Immunotherapy has emerged as a promising approach to address this unmet need, offering the potential for durable remissions and improved patient outcomes. Historically, allogeneic stem cell transplantation has been used for high-risk CLL patients, demonstrating promising survival rates. However, its applicability is limited by high treatment-related mortality and chronic graft-versus-host disease, especially in older and frail patients. Chimeric antigen receptor (CAR) T-cell therapy is gaining attention for its potential in relapsed/refractory CLL. Early clinical trials have shown that CAR T cells can induce durable remissions, with encouraging overall response rates in heavily pretreated patients. Additionally, bispecific antibodies are being explored as immunotherapeutic strategies, showing promising preclinical and early clinical results in targeting CLL cells effectively. One of the major challenges in CLL treatment with T-cell–based therapies is the acquired T-cell dysfunction observed in patients. To overcome these limitations, strategies such as combining targeted agents with cellular immunotherapies, modifying CAR designs, and incorporating immunomodulatory compounds into the manufacturing process are being investigated. These innovative approaches aim to enhance T-cell engagement and improve outcomes for CLL patients, offering hope for more effective and sustainable treatments in the future.

1.
Naeem
A
,
Utro
F
,
Wang
Q
, et al.
Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance
.
Blood Adv
.
2023
;
7
(
9
):
1929
-
1943
.
2.
Wong
RL
,
Choi
MY
,
Wang
HY
,
Kipps
TJ
.
Mutation in Bruton tyrosine kinase (BTK) A428D confers resistance to BTK-degrader therapy in chronic lymphocytic leukemia
.
Leukemia
.
2024
;
38
(
8
):
1818
-
1821
.
3.
Roberts
AW
,
Advani
RH
,
Kahl
BS
, et al.
Phase 1 study of the safety, pharmacokinetics, and antitumour activity of the BCL2 inhibitor navitoclax in combination with rituximab in patients with relapsed or refractory CD20+ lymphoid malignancies
.
Br J Haematol
.
2015
;
170
(
5
):
669
-
678
.
4.
Ahn
IE
,
Davids
MS
.
Therapeutic targeting of apoptosis in chronic lymphocytic leukemia
.
Semin Hematol
.
2024
;
61
(
2
):
109
-
118
.
5.
Caballero
D
,
García-Marco
JA
,
Martino
R
, et al.
Allogeneic transplant with reduced intensity conditioning regimens may overcome the poor prognosis of B-cell chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene and chromosomal abnormalities (11q- and 17p-)
.
Clin Cancer Res
.
2005
;
11
(
21
):
7757
-
7763
.
6.
Ritgen
M
,
Stilgenbauer
S
,
von Neuhoff
N
, et al.
Graft-versus-leukemia activity may overcome therapeutic resistance of chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene status: implications of minimal residual disease measurement with quantitative PCR
.
Blood
.
2004
;
104
(
8
):
2600
-
2602
.
7.
Dreger
P
,
Döhner
H
,
Ritgen
M
, et al
;
German CLL Study Group
.
Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial
.
Blood
.
2010
;
116
(
14
):
2438
-
2447
.
8.
Sorror
ML
,
Maris
MB
,
Sandmaier
BM
, et al.
Hematopoietic cell transplantation after nonmyeloablative conditioning for advanced chronic lymphocytic leukemia
.
J Clin Oncol
.
2005
;
23
(
16
):
3819
-
3829
.
9.
Sorror
ML
,
Storer
BE
,
Sandmaier
BM
, et al.
Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning
.
J Clin Oncol
.
2008
;
26
(
30
):
4912
-
4920
.
10.
Krämer
I
,
Stilgenbauer
S
,
Dietrich
S
, et al.
Allogeneic hematopoietic cell transplantation for high-risk CLL: 10-year follow-up of the GCLLSG CLL3X trial
.
Blood
.
2017
;
130
(
12
):
1477
-
1480
.
11.
van Gelder
M
,
de Wreede
LC
,
Bornhäuser
M
, et al.
Long-term survival of patients with CLL after allogeneic transplantation: a report from the European Society for Blood and Marrow Transplantation
.
Bone Marrow Transplant
.
2017
;
52
(
3
):
372
-
380
.
12.
Shaffer
BC
,
Gooptu
M
,
DeFor
TE
, et al.
Post-transplant cyclophosphamide-based graft-versus-host disease prophylaxis attenuates disparity in outcomes between use of matched or mismatched unrelated donors [published online ahead of print 17 July 2024]
.
J Clin Oncol
.
13.
Kalos
M
,
Levine
BL
,
Porter
DL
, et al.
T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia
.
Sci Transl Med
.
2011
;
3
(
95
):
95ra73
.
14.
Porter
DL
,
Hwang
WT
,
Frey
NV
, et al.
Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia
.
Sci Transl Med
.
2015
;
7
(
303
):
303ra139
.
15.
Melenhorst
JJ
,
Chen
GM
,
Wang
M
, et al.
Decade-long leukaemia remissions with persistence of CD4+ CAR T cells
.
Nature
.
2022
;
602
(
7897
):
503
-
509
.
16.
Frey
NV
,
Gill
S
,
Hexner
EO
, et al.
Long-term outcomes from a randomized dose optimization study of chimeric antigen receptor modified T cells in relapsed chronic lymphocytic leukemia
.
J Clin Oncol
.
2020
;
38
(
25
):
2862
-
2871
.
17.
Brentjens
RJ
,
Rivière
I
,
Park
JH
, et al.
Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias
.
Blood
.
2011
;
118
(
18
):
4817
-
4828
.
18.
Gauthier
J
,
Hirayama
AV
,
Purushe
J
, et al.
Feasibility and efficacy of CD19- targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure
.
Blood
.
2020
;
135
(
19
):
1650
-
1660
.
19.
Turtle
CJ
,
Hay
KA
,
Hanafi
LA
, et al.
Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib
.
J Clin Oncol
.
2017
;
35
(
26
):
3010
-
3020
.
20.
Liang
EC
,
Albittar
A
,
Huang
JJ
, et al.
Factors associated with long-term outcomes of CD19 CAR T-cell therapy for relapsed/refractory CLL
.
Blood Adv
.
2023
;
7
(
22
):
6990
-
7005
.
21.
Siddiqi
T
,
Maloney
DG
,
Kenderian
SS
, et al.
Lisocabtagene maraleucel in chronic lymphocytic leukaemia and small lymphocytic lymphoma (TRANSCEND CLL 004): a multicentre, open-label, single-arm, phase 1-2 study
.
Lancet
.
2023
;
402
(
10402
):
641
-
654
.
22.
Wierda
WG
,
Kenderian
SS
,
Brander
DM
, et al.
CLL-184 characteristics associated with response to lisocabtagenemaraleucel (liso‑cel) in patients with R/R CLL/SLL: exploratory analyses from TRANSCEND CLL 004 study
.
Clin Lymphoma Myeloma Leuk
.
2024
;
24
(
1
):
S346
.
23.
Fraietta
JA
,
Lacey
SF
,
Orlando
EJ
, et al.
Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia
.
Nat Med
.
2018
;
24
(
5
):
563
-
571
.
24.
van Bruggen
JAC
,
Martens
AWJ
,
Fraietta
JA
, et al.
Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy
.
Blood
.
2019
;
134
(
1
):
44
-
58
.
25.
Borogovac
A
,
Siddiqi
T.
Transforming CLL management with immunotherapy: investigating the potential of CAR T-cells and bispecific antibodies
.
Semin Hematol
.
2024
;
61
(
2
):
119
-
130
.
26.
Robinson
HR
,
Qi
J
,
Cook
EM
, et al.
A CD19/CD3 bispecific antibody for effective immunotherapy of chronic lymphocytic leukemia in the ibrutinib era
.
Blood
.
2018
;
132
(
5
):
521
-
532
.
27.
Thompson
PA
,
Jiang
X
,
Banerjee
P
, et al.
A phase two study of high dose blinatumomab in Richter's syndrome
.
Leukemia
.
2022
;
36
(
9
):
2228
-
2232
.
28.
Mhibik
M
,
Gaglione
EM
,
Eik
D
, et al.
Cytotoxicity of the CD3 × CD20 bispecific antibody epcoritamab in CLL is increased by concurrent BTK or BCL-2 targeting
.
Blood Adv
.
2023
;
7
(
15
):
4089
-
4101
.
29.
Kater AP
EH
,
Niemann
CU
, et al.
Epcoritamab in patients with relapsed or refractory chronic lymphocytic leukemia: results from the phase 1b/2 EPCORE CLL-1 trial expansion cohort
.
Leukemia & Lymphoma
.
2023
;
64
(
suppl 1
):
S2
-
S3
.
30.
National Library of Medicine. A phase 1b/2, open-label, safety and efficacy study of epcoritamab (GEN3013; DuoBody®-CD3xCD20) in relapsed/refractory chronic lymphocytic leukemia and Richter's syndrome
. Accessed
2
October
2024
. clinicaltrials.gov.
31.
Ramsay
AG
,
Johnson
AJ
,
Lee
AM
, et al.
Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug
.
J Clin Invest
.
2008
;
118
(
7
):
2427
-
2437
.
32.
Riches
JC
,
Davies
JK
,
McClanahan
F
, et al.
T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production
.
Blood
.
2013
;
121
(
9
):
1612
-
1621
.
33.
Böttcher
M
,
Böttcher-Loschinski
R
,
Kahlfuss
S
, et al.
CLL-derived extracellular vesicles impair T-cell activation and foster T-cell exhaustion via multiple immunological checkpoints
.
Cells
.
2022
;
11
(
14
).
34.
Collins
MA
,
Jung
IY
,
Zhao
Z
, et al.
Enhanced costimulatory signaling improves CAR T-cell effector responses in CLL
.
Cancer Res Commun
.
2022
;
2
(
9
):
1089
-
1103
.
35.
van Bruggen
JAC
,
van der Windt
GJW
,
Hoogendoorn
M
,
Dubois
J
,
Kater
AP
,
Peters
FS
.
Depletion of CLL cells by venetoclax treatment reverses oxidative stress and impaired glycolysis in CD4 T cells
.
Blood Adv
.
2022
;
6
(
14
):
4185
-
4195
.
36.
Martens
AWJ
,
Kavazović
I
,
Krapić
M
, et al.
Chronic lymphocytic leukemia presence impairs antigen-specific CD8+ T-cell responses through epigenetic reprogramming towards short-lived effectors
.
Leukemia
.
2023
;
37
(
3
):
606
-
616
.
37.
Görgün
G
,
Holderried
TA
,
Zahrieh
D
,
Neuberg
D
,
Gribben
JG
.
Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells
.
J Clin Invest
.
2005
;
115
(
7
):
1797
-
1805
.
38.
McClanahan
F
,
Hanna
B
,
Miller
S
, et al.
PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia
.
Blood
.
2015
;
126
(
2
):
203
-
211
.
39.
Ding
W
,
LaPlant
BR
,
Call
TG
, et al.
Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL
.
Blood
.
2017
;
129
(
26
):
3419
-
3427
.
40.
van Bruggen
JAC
,
Peters
FS
,
Mes
M
, et al.
T-cell dysfunction in CLL is mediated through expression of Siglec-10 ligands CD24 and CD52 on CLL cells
.
Blood Adv
.
2024
;
8
(
17
):
4633
-
4646
.
41.
Baguet
C
,
Larghero
J
,
Mebarki
M.
Early predictive factors of failure in autologous CAR T-cell manufacturing and/or efficacy in hematologic malignancies
.
Blood Adv
.
2024
;
8
(
2
):
337
-
342
.
42.
Can
I
,
Cox
MJ
,
Siegler
EL
,
Sakemura
R
,
Kenderian
SS
.
Challenges of chimeric antigen receptor T-cell therapy in chronic lymphocytic leukemia: lessons learned
.
Exp Hematol
.
2022
;
108
:
1
-
7
.
43.
Siddiqi
T
,
Soumerai
JD
,
Dorritie
KA
, et al.
Rapid undetectable MRD (uMRD) responses in patients with relapsed/refractory (R/R) chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) treated with lisocabtagene maraleucel (liso-cel), a CD19-directed CAR T cell product: updated results from transcend CLL 004, a phase ½ study including patients with high-risk disease previously treated with ibrutinib
.
Blood
.
2019
;
134
(
suppl 1
):
503
.
44.
Vitale
C
,
Griggio
V
,
Perutelli
F
,
Coscia
M.
CAR-modified cellular therapies in chronic lymphocytic leukemia: is the uphill road getting less steep?
Hemasphere
.
2023
;
7
(
12
):
e988
.
45.
Long
AH
,
Haso
WM
,
Shern
JF
, et al.
4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors
.
Nat Med
.
2015
;
21
(
6
):
581
-
590
.
46.
Zhao
Z
,
Condomines
M
,
van der Stegen
SJC
, et al.
Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells
.
Cancer Cell
.
2015
;
28
(
4
):
415
-
428
.
47.
Batlevi
CL
,
Palomba
ML
,
Park
J
, et al.
Phase I clinical trial of CD19-targeted 19-28z/4-1bbl “armored” CAR T cells in patients with relapsed or refractory NHL and CLL including Richter transformation
.
Hematological Oncol
.
2019
;
37
(
S2
):
166
-
167
.
48.
Michels
KR
,
Sheih
A
,
Hernandez
SA
, et al.
Preclinical proof of concept for VivoVec, a lentiviral-based platform for in vivo CAR T-cell engineering
.
J Immunother Cancer
.
2023
;
11
(
3
).
49.
Gill
S
,
Vides
V
,
Frey
NV
, et al.
Anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia
.
Blood Adv
.
2022
;
6
(
21
):
5774
-
5785
.
50.
Kater
AP
,
Melenhorst
JJ
.
CAR-T and ibrutinib vs CLL: sequential or simultaneous?
Blood
.
2020
;
135
(
19
):
1611
-
1612
.
51.
Kater
AP
,
Tonino
SH
,
Egle
A
,
Ramsay
AG
.
How does lenalidomide target the chronic lymphocytic leukemia microenvironment?
Blood
.
2014
;
124
(
14
):
2184
-
2189
.
52.
Cao
X
,
Jin
X
,
Zhang
X
, et al.
Small-molecule compounds boost CAR-T cell therapy in hematological malignancies
.
Curr Treat Options Oncol
.
2023
;
24
(
3
):
184
-
211
.
53.
Stock
S
,
Übelhart
R
,
Schubert
ML
, et al.
Idelalisib for optimized CD19- specific chimeric antigen receptor T cells in chronic lymphocytic leukemia patients
.
Int J Cancer
.
2019
;
145
(
5
):
1312
-
1324
.
54.
Funk
CR
,
Wang
S
,
Chen
KZ
, et al.
PI3Kδ/γ inhibition promotes human CART cell epigenetic and metabolic reprogramming to enhance antitumor cytotoxicity
.
Blood
.
2022
;
139
(
4
):
523
-
537
.
55.
Faehling
S
,
Coelho
M
,
Floerchinger
A
, et al.
Simultaneous inhibition of PI3Kgamma and PI3Kdelta deteriorates T-cell function with implications for chronic lymphocytic leukemia
.
Hemasphere
.
2023
;
7
(
3
):
e840
.
56.
Kong
W
,
Dimitri
A
,
Wang
W
, et al.
BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia
.
J Clin Invest
.
2021
;
131
(
16
):
1
-
16
.
You do not currently have access to this content.