TP53 is mutated in 10 to 15% of cases of acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) and is associated with a previous exposure to cytotoxic therapy, complex cytogenetic abnormalities, and a poor prognosis. Recent data have established the importance of TP53-mutant allele status, the determination of which requires specific genetic testing. Compared with monoallelic disease, multihit TP53-mutant AML/MDS is associated with chromosomal abnormalities and decreased overall survival. Most TP53 mutations are missense mutations that localize to the DNA binding domain. Hot-spot mutations involving residues R175, Y220, G245, R248, R273, or R282 represent approximately 35% of all TP53 missense mutations in AML/MDS. There is evidence that these hot-spot mutations may have dominant negative or gain-of-function properties. Here we review this evidence and discuss its potential impact on patient outcomes and clinical management.

1.
Bernard
E
,
Nannya
Y
,
Hasserjian
RP
, et al.
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
.
Nat Med
.
2020
;
26
(
10
):
1549
-
1556
.
2.
Grob
T
,
Al Hinai
ASA
,
Sanders
MA
, et al.
Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome
.
Blood
.
2022
;
139
(
15
):
2347
-
2354
.
3.
Jambhekar
A
,
Ackerman
EE
,
Alpay
BA
,
Lahav
G
,
Lovitch
SB
.
Comparison of TP53 mutations in myelodysplasia and acute leukemia suggests divergent roles in initiation and progression
.
Blood Neoplasia
.
2024
;
1
(
1
):
100004
.
4.
Tashakori
M
,
Kadia
T
,
Loghavi
S
, et al.
TP53 copy number and protein expression inform mutation status across risk categories in acute myeloid leukemia
.
Blood
.
2022
;
140
(
1
):
58
-
72
.
5.
Abel
HJ
,
Oetjen
KA
,
Miller
CA
, et al.
Genomic landscape of TP53-mutated myeloid malignancies
.
Blood Adv
.
2023
;
7
(
16
):
4586
-
4598
.
6.
Wong
TN
,
Ramsingh
G
,
Young
AL
, et al.
Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia
.
Nature
.
2015
;
518
(
7540
):
552
-
555
.
7.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al.
International Consensus Classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
8.
Hasserjian
RP
,
Orazi
A
,
Orfao
A
,
Rozman
M
,
Wang
SA
.
The International Consensus Classification of myelodysplastic syndromes and related entities
.
Virchows Arch
.
2023
;
482
(
1
):
39
-
51
.
9.
Khoury
JD
,
Solary
E
,
Abla
O
, et al.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1703
-
1719
.
10.
Duncavage
EJ
,
Schroeder
MC
,
O'Laughlin
M
, et al.
Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers
.
N Engl J Med
.
2021
;
384
(
10
):
924
-
935
.
11.
Short
NJ
,
Montalban-Bravo
G
,
Hwang
H
, et al.
Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia
.
Blood Adv
.
2020
;
4
(
22
):
5681
-
5689
.
12.
Swoboda
DM
,
Kanagal-Shamanna
R
,
Brunner
AM
, et al.
Marrow ring sideroblasts are highly predictive for TP53 mutation in MDS with excess blasts
.
Leukemia
.
2022
;
36
(
4
):
1189
-
1192
.
13.
Giacomelli
AO
,
Yang
X
,
Lintner
RE
, et al.
Mutational processes shape the landscape of TP53 mutations in human cancer
.
Nat Genet
.
2018
;
50
(
10
):
1381
-
1387
.
14.
Boettcher
S
,
Miller
PG
,
Sharma
R
, et al.
A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies
.
Science
.
2019
;
365
(
6453
):
599
-
604
.
15.
Aubrey
BJ
,
Janic
A
,
Chen
Y
, et al.
Mutant TRP53 exerts a target gene-selective dominant-negative effect to drive tumor development
.
Genes Dev
.
2018
;
32
(
21-22
):
1420
-
1429
.
16.
Wang
Z
,
Burigotto
M
,
Ghetti
S
, et al.
Loss-of-function but not gain-of- function properties of mutant TP53 are critical for the proliferation, survival, and metastasis of a broad range of cancer cells
.
Cancer Discov
.
2024
;
14
(
2
):
362
-
379
.
17.
Hanel
W
,
Marchenko
N
,
Xu
S
,
Yu
SX
,
Weng
W
,
Moll
U.
Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis
.
Cell Death Differ
.
2013
;
20
(
7
):
898
-
909
.
18.
Lang
GA
,
Iwakuma
T
,
Suh
YA
, et al.
Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome
.
Cell
.
2004
;
119
(
6
):
861
-
872
.
19.
Olive
KP
,
Tuveson
DA
,
Ruhe
ZC
, et al.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome
.
Cell
.
2004
;
119
(
6
):
847
-
860
.
20.
Liu
DP
,
Song
H
,
Xu
Y.
A common gain of function of p53 cancer mutants in inducing genetic instability
.
Oncogene
.
2010
;
29
(
7
):
949
-
956
.
21.
Song
H
,
Hollstein
M
,
Xu
Y.
p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM
.
Nat Cell Biol
.
2007
;
9
(
5
):
573
-
580
.
22.
Xiong
S
,
Chachad
D
,
Zhang
Y
, et al.
Differential gain-of-function activity of three p53 hotspot mutants in vivo
.
Cancer Res
.
2022
;
82
(
10
):
1926
-
1936
.
23.
Loizou
E
,
Banito
A
,
Livshits
G
, et al.
A gain-of-function p53-mutant oncogene promotes cell fate plasticity and myeloid leukemia through the pluripotency factor FOXH1
.
Cancer Discov
.
2019
;
9
(
7
):
962
-
979
.
24.
Rajagopalan
A
,
Feng
Y
,
Gayatri
MB
, et al.
A gain-of-function p53 mutant synergizes with oncogenic NRAS to promote acute myeloid leukemia in mice
.
J Clin Invest
.
2023
;
133
(
24
).
25.
Kotler
E
,
Shani
O
,
Goldfeld
G
, et al.
A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation
.
Mol Cell
.
2018
;
71
(
5
):
873
.
26.
Bougeard
G
,
Renaux-Petel
M
,
Flaman
JM
, et al.
Revisiting Li-Fraumeni syndrome from TP53 mutation carriers
.
J Clin Oncol
.
2015
;
33
(
21
):
2345
-
2352
.
27.
Hainaut
P
,
Pfeifer
GP
.
Somatic TP53 mutations in the era of genome sequencing
.
Cold Spring Harb Perspect Med
.
2016
;
6
(
11
):
a026179
.
28.
Hassin
O
,
Nataraj
NB
,
Shreberk-Shaked
M
, et al.
Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients
.
Nat Commun
.
2022
;
13
(
1
):
2800
.
29.
Poeta
ML
,
Manola
J
,
Goldwasser
MA
, et al.
TP53 mutations and survival in squamous-cell carcinoma of the head and neck
.
N Engl J Med
.
2007
;
357
(
25
):
2552
-
2561
.
30.
Neskey
DM
,
Osman
AA
,
Ow
TJ
, et al.
Evolutionary action score of TP53 identifies high-risk mutations associated with decreased survival and increased distant metastases in head and neck cancer
.
Cancer Res
.
2015
;
75
(
7
):
1527
-
1536
.
31.
Dutta
S
,
Pregartner
G
,
Rücker
FG
, et al.
Functional classification of TP53 mutations in acute myeloid leukemia
.
Cancers (Basel)
.
2020
;
12
(
3
).
32.
Xia
J
,
Miller
CA
,
Baty
J
, et al.
Somatic mutations and clonal hematopoiesis in congenital neutropenia
.
Blood
.
2018
;
131
(
4
):
408
-
416
.
33.
Carter
BZ
,
Mak
PY
,
Ke
B
, et al.
Selective targeting of TP53-Y220C mutant AML by PC14586 results in TP53 wild-type conformation and synergistical apoptosis induction by concomitant inhibition of Xpo-1, MDM2, or Bcl-2
.
Blood
.
2023
;
142
(
suppl 1
):
2261
.
34.
Guiley
KZ
,
Shokat
KM
.
A small molecule reacts with the p53 somatic mutant Y220C to rescue wild-type thermal stability
.
Cancer Discov
.
2023
;
13
(
1
):
56
-
69
.
35.
Hsiue
EH
,
Wright
KM
,
Douglass
J
, et al.
Targeting a neoantigen derived from a common TP53 mutation
.
Science
.
2021
;
371
(
6533
).
You do not currently have access to this content.