Chimeric antigen receptor T-cell therapy and bispecific T-cell recruiting antibodies have transformed the treatment landscape for relapsed/refractory multiple myeloma, with B-cell maturation antigen being the most common target and other targets in clinical development. However, these therapies are associated with unique and severe toxicities, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), delayed neurotoxicity, cytopenias, and infection. In addition, immune effector cell-associated hemophagocytic lymphohistiocytosis (HLH)–like syndrome (IEC-HS), which exhibits overlap between CRS and HLH, can be challenging to diagnose and treat. In this review, we provide an overview of toxicities associated with novel immunotherapies for treatment of multiple myeloma and describe management recommendations. The pathophysiology and risk factors behind these toxicities are not yet comprehensively understood. Based on consensus recommendations, treatment for CRS consists of tocilizumab and steroids, while treatment for ICANS includes steroids and anakinra in severe cases. Management of cytopenias and infection is similar to post–hematopoietic cell transplantation principles with antimicrobial prophylaxis, growth factor support, immunoglobulin replacement, and vaccinations. In contrast, effective treatments for delayed neurotoxicity and IEC-HS are lacking, although steroids and anakinra are commonly used. Management of all these toxicities should include a broad differential and multidisciplinary collaboration with infectious diseases, neurology, and/or critical care providers.

1.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al.
ASTCT Consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transplant
.
2019
;
25
(
4
):
625
-
638
.
doi:10.1016/j.bbmt.2018.12.758
.
2.
Munshi
NC
,
Anderson
LD
Jr
,
Shah
N
, et al.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
doi:10.1056/NEJMoa2024850
.
3.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
-
324
.
doi:10.1016/S0140-6736(21)00933-8
.
4.
Moreau
P
,
Garfall
AL
,
van de Donk
NWCJ
, et al.
Teclistamab in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2022
;
387
(
6
):
495
-
505
.
doi:10.1056/NEJMoa2203478
.
5.
Bahlis
NJ
,
Tomasson
MH
,
Mohty
M
, et al.
Efficacy and safety of elranatamab in patients with relapsed/refractory multiple myeloma naïve to B-cell maturation antigen (BCMA)-directed therapies: results from cohort A of the Magnetismm-3 Study
.
Blood
.
2022
;
140
(
suppl 1
):
391
-
393
.
doi:10.1182/blood-2022-162440
.
6.
Bumma
N
,
Richter
J
,
Brayer
J
, et al.
Updated safety and efficacy of REGN5458, a BCMAxCD3 bispecific antibody, treatment for relapsed/refractory multiple myeloma: a phase 1/2 first-in-human study
.
Blood
.
2022
;
140
(
suppl 1
):
10140
-
10141
.
doi:10.1182/blood-2022-159969
.
7.
Wong
SW
,
Bar
N
,
Paris
L
, et al.
Alnuctamab (ALNUC; BMS-986349; CC-93269), a B-cell maturation antigen (BCMA) × CD3 T-cell engager (TCE), in patients (pts) with relapsed/refractory multiple myeloma (RRMM): results from a phase 1 first-in-human clinical study
.
Blood
.
2022
;
140
(
suppl 1
):
400
-
402
.
doi:10.1182/blood-2022-159009
8.
D'Souza
A
,
Shah
N
,
Rodriguez
C
, et al.
A phase I first-in-human study of ABBV-383, a B-cell maturation antigen × CD3 bispecific T-cell redirecting antibody, in patients with relapsed/refractory multiple myeloma
.
J Clin Oncol
.
2022
;
40
(
31
):
3576
-
3586
.
doi:10.1200/JCO.22.01504
.
9.
Mailankody
S
,
Devlin
SM
,
Landa
J
, et al.
GPRC5D-targeted CAR T cells for myeloma
.
N Engl J Med
.
2022
;
387
(
13
):
1196
-
1206
.
doi:10.1056/NEJMoa2209900
.
10.
Chari
A
,
Minnema
MC
,
Berdeja
JG
, et al.
Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma
.
N Engl J Med
.
2022
;
387
(
24
):
2232
-
2244
.
doi:10.1056/NEJMoa2204591
.
11.
Trudel
S
,
Cohen
AD
,
Krishnan
AY
, et al.
Cevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated relapsed/refractory multiple myeloma (RRMM): updated results from an ongoing phase I study
.
Blood
.
2021
;
138
(
suppl 1
):
157
.
doi:10.1182/blood-2021-147983
.
12.
Martin
TG
,
Mateos
MV
,
Nooka
A
, et al.
Detailed overview of incidence and management of cytokine release syndrome observed with teclistamab in the MajesTEC-1 study of patients with relapsed/refractory multiple myeloma
.
Cancer
.
2023
;
129
(
13
):
2035
-
2046
.
doi:10.1002/cncr.34756
.
13.
Hansen
DK
,
Sidana
S
,
Peres
LC
, et al.
Idecabtagene vicleucel for relapsed/refractory multiple myeloma: real-world experience from the Myeloma CAR T Consortium
.
J Clin Oncol
.
2023
;
41
(
11
):
2087
-
2097
.
doi:10.1200/JCO.22.01365
.
14.
Brudno
JN
,
Kochenderfer
JN
.
Toxicities of chimeric antigen receptor T cells: recognition and management
.
Blood
.
2016
;
127
(
26
):
3321
-
3330
.
doi:10.1182/blood-2016-04-703751
.
15.
Neelapu
SS
,
Tummala
S
,
Kebriaei
P
, et al.
Chimeric antigen receptor T-cell therapy—assessment and management of toxicities
.
Nat Rev Clin Oncol
.
2018
;
15
(
1
):
47
-
62
.
doi:10.1038/nrclinonc.2017.148
.
16.
Riegler
LL
,
Jones
GP
,
Lee
DW
.
Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy
.
Ther Clin Risk Manag
.
2019
;
15
:
323
-
335
.
doi:10.2147/TCRM.S150524
.
17.
Maus
MV
,
Alexander
S
,
Bishop
MR
, et al.
Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events
.
J Immunother Cancer
.
2020
;
8
(
2
):
e001511
.
doi:10.1136/jitc-2020-001511
.
18.
Jakubowiak
AJ
,
Bahlis
NJ
,
Raje
NS
, et al.
Elranatamab, a BCMA-targeted T-cell redirecting immunotherapy, for patients with relapsed or refractory multiple myeloma: updated results from MagnetisMM-1
.
J Clin Oncol
.
2022
;
40
(
16, suppl
):
8014
.
doi:10.1200/JCO.2022.40.16_suppl.8014
.
19.
Strati
P
,
Ahmed
S
,
Kebriaei
P
, et al.
Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma
.
Blood Adv
.
2020
;
4
(
13
):
3123
-
3127
.
doi:10.1182/bloodadvances.2020002328
.
20.
Jatiani
SS
,
Aleman
A
,
Madduri
D
, et al.
Myeloma CAR-T CRS management with IL-1R antagonist anakinra
.
Clin Lymphoma Myeloma Leuk
.
2020
;
20
(
9
):
632
-
636.e1636e1
.
doi:10.1016/j.clml.2020.04.020
.
21.
Wong
SW
,
Richard
S
,
Lin
Y
, et al.
Anakinra targeting cytokine release syndrome associated with chimeric antigen receptor T-cell therapies
.
Blood
.
2021
;
138
(
suppl 1
):
2812
.
doi:10.1182/blood-2021-150592
.
22.
Wehrli
M
,
Gallagher
K
,
Chen
Y-B
, et al.
Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS)
.
J Immunother Cancer
.
2022
;
10
(
1
):
e003847
.
doi:10.1136/jitc-2021-003847
.
23.
Patel
S
,
Cenin
D
,
Corrigan
D
, et al.
Siltuximab for first-line treatment of cytokine release syndrome: a response to the national shortage of tocilizumab
.
Blood
.
2022
;
140
(
suppl 1
):
5073
-
5074
.
doi:10.1182/blood-2022-169809
.
24.
Zhang
L
,
Wang
S
,
Xu
J
, et al.
Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy
.
Exp Hematol Oncol
.
2021
;
10
(
1
):
16
.
doi:10.1186/s40164-021-00209-2
.
25.
Lee
DW
,
Gardner
R
,
Porter
DL
, et al.
Current concepts in the diagnosis and management of cytokine release syndrome
.
Blood
.
2014
;
124
(
2
):
188
-
195
.
doi:10.1182/blood-2014-05-552729
.
26.
Sterner
RM
,
Sakemura
R
,
Cox
MJ
, et al.
GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts
.
Blood
.
2019
;
133
(
7
):
697
-
709
.
doi:10.1182/blood-2018-10-881722
.
27.
Wang
X
,
Zhao
L
,
Wang
J
, et al.
Correlation of cytokine release syndrome with prognosis after chimeric antigen receptor T cell therapy: analysis of 54 patients with relapsed or refractory multiple myeloma
.
Front Immunol
.
2022
;
13
:
814548
.
doi:10.3389/fimmu.2022.814548
.
28.
Trudel
S
,
Bahlis
NJ
,
Spencer
A
, et al.
Pretreatment with tocilizumab prior to the CD3 bispecific cevostamab in patients with relapsed/refractory multiple myeloma (RRMM) showed a marked reduction in cytokine release syndrome incidence and severity
.
Blood
.
2022
;
140
(
suppl 1
):
1363
-
1365
.
doi:10.1182/blood-2022-159381
.
29.
Park
JH
,
Sauter
CS
,
Palomba
ML
, et al.
A phase II study of prophylactic anakinra to prevent CRS and neurotoxicity in patients receiving CD19 CAR T cell therapy for relapsed or refractory lymphoma
.
Blood
.
2021
;
138
(
suppl 1
):
96
.
doi:10.1182/blood-2021-150431
.
30.
Anakinra for the prevention of cytokine release syndrome and neurotoxicity in patients with B-cell non-Hodgkin lymphoma receiving CD19-targeted CAR-T cell therapy
. ClinicalTrials.gov, NCT04359784. https://clinicaltrials.gov/study/NCT04359784. Accessed
19
March
2023
.
31.
Strati
P
,
Jallouk
A
,
Deng
Q
, et al.
A Phase I Study of Prophylactic Anakinra to Mitigate ICANS in Patients with Large B-cell Lymphoma
.
Blood Adv
.
2023
.
32.
Gust
J
,
Hay
KA
,
Hanafi
L-A
, et al.
Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells
.
Cancer Discov
.
2017
;
7
(
12
):
1404
-
1419
.
doi:10.1158/2159-8290.CD-17-0698
.
33.
Strati
P
,
Nastoupil
LJ
,
Westin
J
, et al.
Clinical and radiologic correlates of neurotoxicity after axicabtagene ciloleucel in large B-cell lymphoma
.
Blood Adv
.
2020
;
4
(
16
):
3943
-
3951
.
doi:10.1182/bloodadvances.2020002228
.
34.
Santomasso
BD
,
Gust
J
,
Perna
F
.
How I treat unique and difficult-to-manage cases of CAR T-cell therapy-associated neurotoxicity
.
Blood
.
2023
;
141
(
20
):
2443
-
2451
.
doi:10.1182/blood.2022017604
.
35.
Chari
A
,
Touzeau
C
,
Schinke
C
, et al.
Talquetamab, a G protein-coupled receptor family C group 5 member D × CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): phase 1/2 results from MonumenTAL-1
.
Blood
.
2022
;
140
(
suppl 1
):
384
-
387
.
doi:10.1182/blood-2022-159707
.
36.
Cohen
AD
,
Parekh
S
,
Santomasso
BD
, et al.
Incidence and management of CAR-T neurotoxicity in patients with multiple myeloma treated with ciltacabtagene autoleucel in CARTITUDE studies
.
Blood Cancer J
.
2022
;
12
(
2
):
32
.
doi:10.1038/s41408-022-00629-1
.
37.
San-Miguel
J
,
Dhakal
B
,
Yong
K
, et al.
Cilta-cel or standard care in lenalidomide-refractory multiple myeloma
.
N Engl J Med
.
2023
;
389
(
4
):
335
-
347
.
doi:10.1056/NEJMoa2303379
.
38.
Hansen
DK
,
Patel
KK
,
Peres
LC
, et al.
Safety and efficacy of standard of care (SOC) ciltacabtagene autoleucel (cilta-cel) for relapsed/refractory multiple myeloma (RRMM)
.
J. Clin. Oncol
.
2023
;
41
(
16, suppl
):
8012
.
doi:10.1182/blood.2022015526
.
39.
Badar
T
,
Johnson
BD
,
Hamadani
M
.
Delayed neurotoxicity after axicabtagene ciloleucel therapy in relapsed refractory diffuse large B-cell lymphoma
.
Bone Marrow Transplant
.
2021
;
56
(
3
):
683
-
685
.
doi:10.1038/s41409-020-01029-4
.
40.
Van Oekelen
O
,
Aleman
A
,
Upadhyaya
B
, et al.
Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy
.
Nat Med
.
2021
;
27
(
12
):
2099
-
2103
.
doi:10.1038/s41591-021-01564-7
.
41.
Hoogland
AI
,
Barata
A
,
Logue
J
, et al.
Change in neurocognitive performance among patients with non-Hodgkin lymphoma in the first year after chimeric antigen receptor T cell therapy
.
Transplant Cell Ther
.
2022
;
28
(
6
):
305.e1
-
305.e9
.
doi:10.1016/j.jtct.2022.03.023
.
42.
Bal
S
,
Berdeja
J
,
Htut
M
, et al.
BMS-986393 (CC-95266), a G protein–coupled receptor class C group 5 member D (GPRC5D)–targeted CAR T-cell therapy for relapsed/refractory multiple myeloma (RRMM): results from a phase 1 study
.
Blood
.
2022
;
140
(
suppl 1
):
883
-
885
.
doi:10.1182/blood-2022-162395
.
43.
Hines
MR
,
Knight
TE
,
McNerney
KO
, et al.
Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome
.
Transplant Cell Ther
.
2023
;
29
(
7
):
438.e1
-
438.e16
.
doi:10.1016/j.jtct.2023.03.006
.
44.
Kennedy
VE
,
Wong
C
,
Huang
C-Y
, et al.
Macrophage activation syndrome-like (MAS-L) manifestations following BCMA-directed CAR T cells in multiple myeloma
.
Blood Adv
.
2021
;
5
(
23
):
5344
-
5348
.
doi:10.1182/bloodadvances.2021005020
.
45.
Wang
Y
,
Li
C
,
Xia
J
, et al.
Humoral immune reconstitution after anti-BCMA CAR T-cell therapy in relapsed/refractory multiple myeloma
.
Blood Adv
.
2021
;
5
(
23
):
5290
-
5299
.
doi:10.1182/bloodadvances.2021004603
.
46.
Brudno
JN
,
Natrakul
D
,
Lam
N
,
Dulau-Florea
A
,
Yuan
CM
,
Kochenderfer
JN
.
Acute and delayed cytopenias following CAR T-cell therapy: an investigation of risk factors and mechanisms
.
Leuk Lymphoma
.
2022
;
63
(
8
):
1849
-
1860
.
doi:10.1080/10428194.2022.2056172
.
47.
Jain
T
,
Olson
TS
,
Locke
FL
.
How I treat cytopenias after CAR T-cell therapy
.
Blood
.
2023
;
141
(
20
):
2460
-
2469
.
doi:10.1182/blood.2022017415
.
48.
Barreto
JN
,
Bansal
R
,
Hathcock
MA
, et al.
The impact of granulocyte colony stimulating factor on patients receiving chimeric antigen receptor T-cell therapy
.
Am J Hematol
.
2021
;
96
(
10
):
E399
-
E402
.
doi:10.1002/ajh.26313
.
49.
Gaut
D
,
Tang
K
,
Sim
MS
,
Duong
T
,
Young
P
,
Sasine
J
.
Filgrastim associations with CAR T-cell therapy
.
Int J Cancer
.
2021
;
148
(
5
):
1192
-
1196
.
doi:10.1002/ijc.33356
.
50.
Miller
KC
,
Johnson
PC
,
Abramson
JS
, et al.
Effect of granulocyte colony-stimulating factor on toxicities after CAR T cell therapy for lymphoma and myeloma
.
Blood Cancer J
.
2022
;
12
(
10
):
146
.
doi:10.1038/s41408-022-00741-2
.
51.
Ma
S
,
Li
H
,
Zhou
D
, et al.
Associations of granulocyte colony-stimulating factor with toxicities and efficacy of chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma
.
Cytotherapy
.
2023
;
25
(
6
):
653
-
658
.
doi:10.13039/501100001809
.
52.
Kambhampati
S
,
Sheng
Y
,
Huang
C-Y
, et al.
Infectious complications in patients with relapsed refractory multiple myeloma after BCMA CAR T-cell therapy
.
Blood Adv
.
2022
;
6
(
7
):
2045
-
2054
.
doi:10.1182/bloodadvances.2020004079
.
53.
Logue
JM
,
Peres
LC
,
Hashmi
H
, et al.
Early cytopenias and infections after standard of care idecabtagene vicleucel in relapsed or refractory multiple myeloma
.
Blood Adv
.
2022
;
6
(
24
):
6109
-
6119
.
doi:10.1182/bloodadvances.2022008320
.
54.
Josyula
S
,
Pont
MJ
,
Dasgupta
S
, et al.
Pathogen-specific humoral immunity and infections in B cell maturation antigen-directed chimeric antigen receptor T cell therapy recipients with multiple myeloma
.
Transplant Cell Ther
.
2022
;
28
(
6
):
304.e1
-
304.e9
.
doi:10.1016/j.jtct.2022.03.005
.
55.
Sim
BZ
,
Longhitano
A
,
Er
J
, et al.
Infectious complications of bispecific antibody therapy in patients with multiple myeloma
.
Blood
.
2022
;
140
(
suppl 1
):
4384
-
4385
.
doi:10.1182/blood-2022-167834
.
56.
Mazahreh
F
,
Mazahreh
L
,
Schinke
C
, et al.
Risk of infections associated with the use of bispecific antibodies in multiple myeloma: a pooled analysis
.
Blood Adv
.
2023
;
7
(
13
):
3069
-
3074
.
doi:10.1182/bloodadvances.2022009435
.
57.
O'Connor
BP
,
Raman
VS
,
Erickson
LD
, et al.
BCMA is essential for the survival of long-lived bone marrow plasma cells
.
J Exp Med
.
2004
;
199
(
1
):
91
-
98
.
doi:10.1084/jem.20031330
.
58.
Raje
N
,
Berdeja
J
,
Lin
Y
, et al.
Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2019
;
380
(
18
):
1726
-
1737
.
doi:10.1056/NEJMoa1817226
.
59.
Walti
CS
,
Krantz
EM
,
Maalouf
J
, et al.
Antibodies against vaccine-preventable infections after CAR-T cell therapy for B cell malignancies
.
JCI Insight
.
2021
;
6
(
11
):
e146743
.
doi:10.1172/jci.insight.146743
.
60.
Hill
JA
,
Seo
SK
.
How I prevent infections in patients receiving CD19- targeted chimeric antigen receptor T cells for B-cell malignancies
.
Blood
.
2020
;
136
(
8
):
925
-
935
.
doi:10.1182/blood.2019004000
.
61.
Hill
JA
,
Giralt
S
,
Torgerson
TR
,
Lazarus
HM
.
CAR-T—and a side order of IgG, to go?—immunoglobulin replacement in patients receiving CAR-T cell therapy
.
Blood Rev
.
2019
;
38
:
100596
.
doi:10.1016/j.blre.2019.100596
.
62.
Kampouri
E
,
Walti
CS
,
Gauthier
J
,
Hill
JA
.
Managing hypogammaglobulinemia in patients treated with CAR-T-cell therapy: key points for clinicians
.
Expert Rev Hematol
.
2022
;
15
(
4
):
305
-
320
.
doi:10.1080/17474086.2022.2063833
.
63.
Wang
D
,
Mao
X
,
Que
Y
, et al.
Viral infection/reactivation during long-term follow-up in multiple myeloma patients with anti-BCMA CAR therapy
.
Blood Cancer J
.
2021
;
11
(
10
):
168
.
doi:10.1038/s41408-021-00563-8
.
64.
Mohan
M
,
Nagavally
S
,
Dhakal
B
, et al.
Risk of infections with B-cell maturation antigen-directed immunotherapy in multiple myeloma
.
Blood Adv
.
2022
;
6
(
8
):
2466
-
2470
.
doi:10.1182/bloodadvances.2021006178
.
65.
Cohen
AD
,
Harrison
SJ
,
Krishnan
A
, et al.
Initial clinical activity and safety of BFCR4350A, a FcRH5/CD3 T-cell-engaging bispecific antibody, in relapsed/refractory multiple myeloma
.
Blood
.
2020
;
136
(
suppl 1
):
42
-
43
.
doi:10.1182/blood-2020-136985
.
66.
Cipkar
C
,
Chen
C
,
Trudel
S
.
Antibodies and bispecifics for multiple myeloma: effective effector therapy
.
Hematology Am Soc Hematol Educ Program
.
2022
;
2022
(
1
):
163
-
172
.
doi:10.1182/hematology.2022000334
.
You do not currently have access to this content.