Low- and intermediate-risk myelodysplastic syndromes (LR-MDS and Int-MDS, respectively) are characterized by ineffective hematopoiesis, along with the presence of at least 10% dysplasia in one cell line, accompanied by a low number and depth of peripheral blood cytopenias, a low bone marrow blast percentage, and a score of ≤0 on the Molecular International Prognostic Scoring System (IPSS-M). The information gleaned from mutational profiles at the time of myelodysplastic syndrome (MDS) diagnosis and over subsequent time points help with classification and prognosis, guiding therapeutic decisions. In LR-MDS, these decisions are initially focused on improving symptom control and optimizing hematologic parameters. New therapeutic options to reduce the red blood cell (RBC) transfusion burden have emerged since 2020 and include luspatercept and imetelstat. Erythropoiesis-stimulating agents and lenalidomide also address anemia and are generally recommended to start at the time of transfusion dependency, although emerging data suggest that an earlier start of these interventions might offer clinical benefits. Patients can derive years of benefit from these approaches in LR-MDS, but despite these therapies, ultimately MDS will evolve into higher-risk MDS (HR-MDS)/acute myeloid leukemia. Even though most LR-MDS patients present with anemia, patients can have isolated thrombocytopenia for which thrombopoietin receptor analogues can be used if blasts are low. Immunosuppressive therapy such as antithymocyte globulin is favored in the hypocellular MDS setting. Dose-modified hypomethylating agent use can be considered for LR-MDS, although neither overall survival (OS) nor progression-free survival (PFS) has been shown to improve with this approach. Targeted therapy directed to the presence of an IDH1 mutation is U.S. Food and Drug Administration (FDA) approved for the rare IDH1 mutated MDS (<10% of the time) and consideration to use an IDH2 inhibitor for IDH2 mutated MDS (<5% of the time) is reasonable. Interestingly, IDH mutations seem to appear with increased frequency in older patients and in patients with underlying autoimmune/rheumatological disorders.1 

1.
Hong
LE
,
Wechalekar
MD
,
Kutyna
M
, et al
.
IDH-mutant myeloid neoplasms are associated with seronegative rheumatoid arthritis and innate immune activation
.
Blood
.
2024
;
143
(
18
):
1873
-
1877
.
2.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al
.
International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
3.
Khoury
JD
,
Solary
E
,
Abla
O
, et al
.
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: myeloid and histiocytic/dendritic neoplasms
.
Leukemia.
2022
;
36
(
7
):
1703
-
1719
.
4.
Pfeilstöcker
M
,
Tuechler
H
,
Sanz
G
, et al
.
Time-dependent changes in mortality and transformation risk in MDS
.
Blood
.
2016
;
128
(
7
):
902
-
910
.
5.
Bernard
E
,
Tuechler
H
,
Greenberg
PL
, et al
.
Molecular International Prognostic Scoring System for myelodysplastic syndromes
.
NEJM Evid
.
2022
;
1
(
7
):EVIDoa2200008.
6.
Schafer
AI
,
Cheron
RG
,
Dluhy
R
, et al
.
Clinical consequences of acquired transfusional iron overload in adults
.
N Engl J Med
.
1981
;
304
(
6
):
319
-
324
.
7.
Malcovati
L
,
Della Porta
MG
,
Cazzola
M.
Predicting survival and leukemic evolution in patients with myelodysplastic syndrome
.
Haematologica
.
2006
;
91
(
12
):
1588
-
1590
.
8.
Hoeks
M
,
Bagguley
T
,
van Marrewijk
C
, et al
; EUMDS Registry Participants.
Toxic iron species in lower-risk myelodysplastic syndrome patients: course of disease and effects on outcome
.
Leukemia
.
2021
;
35
(
6
):
1745
-
1750
.
9.
Leitch
HA
,
Buckstein
R.
How I treat iron overload in adult MDS
.
Blood
.
2025
;
145
(
4
):
383
-
396
.
10.
Buckstein
R
,
Chodirker
L
,
Yee
KWL
, et al
.
The burden of red blood cell transfusions in patients with lower-risk myelodysplastic syndromes and ring sideroblasts: an analysis of the prospective MDS-CAN registry
.
Leuk Lymphoma
.
2023
;
64
(
3
):
651
-
661
.
11.
Cusatis
R
,
Martens
MJ
,
Nakamura
R
, et al
.
Health-related quality of life in reduced-intensity hematopoietic cell transplantation based on donor availability in patients aged 50-75 with advanced myelodysplastic syndrome: BMT CTN 1102
.
Am J Hematol
.
2023
;
98
(
2
):
229
-
250
.
12.
Carraway
HE
,
Saygin
C.
Therapy for lower-risk MDS
.
Hematology Am Soc Hematol Educ Program
.
2020
;
2020
(
1
):
426
-
433
.
13.
List
A
,
Dewald
G
,
Bennett
J
, et al
; Myelodysplastic Syndrome-003 Study Investigators.
Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion
.
N Engl J Med
.
2006
;
355
(
14
):
1456
-
1465
.
14.
Fenaux
P
,
Platzbecker
U
,
Mufti
GJ
, et al
.
Luspatercept in patients with lower- risk myelodysplastic syndromes
.
N Engl J Med
.
2020
;
382
(
2
):
140
-
151
.
15.
Platzbecker
U
,
Della Porta
MG
,
Santini
V
, et al
.
Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): interim analysis of a phase 3, open-label, randomised controlled trial
.
Lancet
.
2023
;
402
(
10399
):
373
-
385
.
16.
Della
Porta MG
,
Garcia-Manero
G
,
Santini
V
, et al
.
Luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): primary analysis of a phase 3, open-label, randomised, controlled trial
.
Lancet Haematol
.
2024
;
11
(
9
):
e646
-
e658
.
17.
Garcia-Manero
G
,
Porta
MGD
,
Zeidan
AM
, et al
.
Overall survival (OS) and duration of response for transfusion independence (TI) in erythropoiesis stimulating agent (ESA)–naive patients (pts) with very low-, low-, or intermediate-risk myelodysplastic syndromes (MDS) treated with luspatercept (LUSPA) vs epoetin alfa (EA) in the COMMANDS trial
.
J Clin Oncol
.
2025
;
43
(
16_suppl
):
6512
.
18.
Steensma
DP
,
Fenaux
P
,
Van Eygen
K
, et al
.
Imetelstat achieves meaningful and durable transfusion independence in high transfusion-burden patients with lower-risk myelodysplastic syndromes in a phase II study
.
J Clin Oncol
.
2021
;
39
(
1
):
48
-
56
.
19.
Platzbecker
U
,
Santini
V
,
Fenaux
P
, et al
.
Imetelstat in patients with lower- risk myelodysplastic syndromes who have relapsed or are refractory to erythropoiesis-stimulating agents (IMerge): a multinational, randomised, double-blind, placebo-controlled, phase 3 trial
.
Lancet
.
2024
;
403
(
10423
):
249
-
260
.
20.
Cortes
JE
,
Yang
J
,
Roboz
GJ
, et al
.
Olutasidenib alone or combined with azacitidine in patients with mutant IDH1 myelodysplastic syndrome
.
Blood Adv
.
2025
;
9
(
20
):
5293
-
5305
.
21.
DiNardo
CD
,
Venugopal
S
,
Lachowiez
C
, et al
.
Targeted therapy with the mutant IDH2 inhibitor enasidenib for high-risk IDH2-mutant myelodysplastic syndrome
.
Blood Adv
.
2023
;
7
(
11
):
2378
-
2387
.
22.
Sebert
M
,
Chevret
S
,
Dimicoli-Salazar
S
, et al
.
Enasidenib (ENA) monotherapy in patients with IDH2 mutated myelodysplastic syndrome (MDS), the ideal phase 2 study by the GFM and Emsco Groups
.
Blood
.
2024
;
144
(
Suppl 1
):
1839
.
23.
Lachey
J
,
Rovaldi
C
,
Bobba
S
, et al
.
Elritercept, a modified activin receptor IIA ligand trap, increased erythropoiesis and thrombopoiesis in a phase 1 trial
.
Blood Adv
.
2025
;
9
(
1
):
193
-
201
.
24.
Diez-Campelo
M
,
Ross
DM
,
Giagounidis
A
, et al
.
Durable clinical benefit with Ker-050 treatment: findings from an ongoing phase 2 study in participants with lower-risk MDS
.
Blood
.
2023
;
142
(
Suppl 1
):
196
.
25.
Komrokji
RS
,
Diez-Campelo
M
,
Chee
LCY
, et al
.
Renew trial in progress: a phase 3, double-blind, placebo-controlled study to evaluate the efficacy and safety of elritercept (KER-050) for the treatment of transfusion-dependent anemia in adult participants with very low-, low-, or intermediate-risk myelodysplastic neoplasms (MDS)
.
Blood
.
2024
;
144
(
Suppl 1
):
3228
.3221.
26.
Robinette
ML
,
Carraway
HE.
Expert perspective: hematologic malignancies and vasculitis
.
Arthritis Rheumatol
.
2025
;
77
(
10
):
1305
-
1316
.
27.
Smith
MA
,
Choudhary
GS
,
Pellagatti
A
, et al
.
U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies
.
Nat Cell Biol
.
2019
;
21
(
5
):
640
-
650
.
28.
Garcia-Manero
G
,
Sallman
D
,
Tarantolo
SR
, et al
.
Preliminary safety, efficacy and molecular characterization in patients with higher-risk myelodysplastic syndrome treated with single agent emavusertib (CA-4948)
.
Blood
.
2024
;
144
(
Suppl 1
):
3225
.
29.
Chakraborty
S
,
Shapiro
LC
,
de Oliveira
S
,
Rivera-Pena
B
,
Verma
A
,
Shastri
A
.
Therapeutic targeting of the inflammasome in myeloid malignancies
.
Blood Cancer J
.
2021
;
11
(
9
):
152
.
30.
Garcia-Manero
G
,
Abaza
Y
,
Greenberg
PL
, et al
.
Preliminary safety and biomarker results of the NLRP3 inflammasome inhibitor DFV890 in adult patients with myeloid diseases: a phase 1b study
.
Blood
.
2024
;
144
(
Suppl 1
):
353
.
31.
de Swart
L
,
Crouch
S
,
Hoeks
M
, et al
; EUMDS Registry Participants.
Impact of red blood cell transfusion dose density on progression-free survival in patients with lower-risk myelodysplastic syndromes
.
Haematologica
.
2020
;
105
(
3
):
632
-
639
.
32.
Díez-Campelo
M
,
López-Cadenas
F
,
Xicoy
B
, et al
.
Low dose lenalidomide versus placebo in non-transfusion dependent patients with low risk, del(5q) myelodysplastic syndromes (SintraREV): a randomised, double-blind, phase 3 trial
.
Lancet Haematol
.
2024
;
11
(
9
):
e659
-
e670
.
33.
Komrokji
RS
,
Ammad-ud-din
M
,
Al Ali
NH
, et al
.
Hematological response to frontline treatment in lower risk myelodysplastic syndromes (LRMDS) is associated with better overall survival
.
Blood
.
2023
;
142
(
Suppl 1
):
1867
.
34.
Ades
L
,
Cluzeau
T
,
Comont
T
, et al
.
Combining ESA and luspatercept in non-RS MDS patients having failed ESA - Results of the phase 1-2 Part a of the GFM Combola Study
.
Blood
.
2024
;
144
(
Suppl 1
):
351
.
35.
Platzbecker
U
,
Santini
V
,
Zeidan
AM
, et al
.
Effect of prior treatments on the clinical activity of imetelstat in transfusion-dependent patients with erythropoiesis-stimulating agent, relapsed or refractory/ineligible lower-risk myelodysplastic syndromes
.
Blood
.
2024
;
144
(
Suppl 1
):
352
.
36.
Sasaki
K
,
Jabbour
E
,
Montalban-Bravo
G
, et al
.
Low-dose decitabine versus low-dose azacitidine in lower-risk MDS
.
NEJM Evid
.
2022
;
1
(
10
):EVIDoa2200034.
37.
Fenaux
P
,
Santini
V
,
Spiriti
MAA
, et al
.
A phase 3 randomized, placebo- controlled study assessing the efficacy and safety of epoetin-alpha in anemic patients with low-risk MDS
.
Leukemia
.
2018
;
32
(
12
):
2648
-
2658
.
38.
Gabrilove
J
,
Paquette
R
,
Lyons
RM
, et al
.
Phase 2, single-arm trial to evaluate the effectiveness of darbepoetin alfa for correcting anaemia in patients with myelodysplastic syndromes
.
Br J Haematol
.
2008
;
142
(
3
):
379
-
393
.
39.
Fenaux
P
,
Giagounidis
A
,
Selleslag
D
, et al
; MDS-004 Lenalidomide del5q Study Group.
A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q
.
Blood
.
2011
;
118
(
14
):
3765
-
3776
.
40.
Santini
V
,
Almeida
A
,
Giagounidis
A
, et al
.
Randomized phase III study of lenalidomide versus placebo in RBC transfusion-dependent patients with lower-risk non-del(5q) Myelodysplastic syndromes and ineligible for or refractory to erythropoiesis-stimulating agents
.
J Clin Oncol
.
2016
;
34
(
25
):
2988
-
2996
.
41.
DiNardo
CD
,
Roboz
GJ
,
Watts
JM
, et al
.
Final phase 1 substudy results of ivosidenib for patients with mutant IDH1 relapsed/refractory myelodysplastic syndrome
.
Blood Adv
.
2024
;
8
(
15
):
4209
-
4220
. doi:10.1182/bloodadvances.2023012302.
42.
Garcia-Manero
G
,
Griffiths
EA
,
Steensma
DP
, et al
.
Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study
.
Blood
.
2020
;
136
(
6
):
674
-
683
.
43.
Garcia-Manero
G
,
McCloskey
J
,
Griffiths
EA
, et al
.
Oral decitabine-cedazuridine versus intravenous decitabine for myelodysplastic syndromes and chronic myelomonocytic leukaemia (ASCERTAIN): a registrational, randomised, crossover, pharmacokinetics, phase 3 study
.
Lancet Haematol
.
2024
;
11
(
1
):
e15
-
e26
.
44.
Oliva
EN
,
Alati
C
,
Santini
V
, et al
.
Eltrombopag versus placebo for low-risk myelodysplastic syndromes with thrombocytopenia (EQoL-MDS): phase 1 results of a single-blind, randomised, controlled, phase 2 superiority trial
.
Lancet Haematol
.
2017
;
4
(
3
):
e127
-
e136
.
45.
Oliva
EN
,
Riva
M
,
Niscola
P
, et al
.
Eltrombopag for low-risk myelodysplastic syndromes with thrombocytopenia: interim results of a phase II, randomized, placebo-controlled clinical trial (EQOL-MDS)
.
J Clin Oncol
.
2023
;
41
(
28
):
4486
-
4496
.
46.
Stahl
M
,
DeVeaux
M
,
de Witte
T
, et al
.
The use of immunosuppressive therapy in MDS: clinical outcomes and their predictors in a large international patient cohort
.
Blood Adv
.
2018
;
2
(
14
):
1765
-
1772
.
47.
Sebert
M
,
Cluzeau
T
,
Beyne Rauzy
O
, et al
.
Ivosidenib monotherapy is effective in patients with IDH1 mutated myelodysplastic syndrome (MDS): the idiome phase 2 study by the GFM Group
.
Blood
.
2021
;
138
(
Suppl 1
):
62
.
48.
Winer
ES
,
Konopleva
M
,
Tun
HW
, et al
.
Meeting report from the 2024 Symposium on IRAK4 in Cancer: highlights and clinical updates
.
Clin Lymphoma Myeloma Leuk
.
2025
;
30
:
S2152
-
2650
(25)00196-X.
49.
Garcia-Manero
G
,
Madanat
YF
,
Sekeres
MA
, et al
.
R289, a Dual Irak 1/4 inhibitor, in patients with relapsed/refractory (R/R) lower-risk myelodysplastic syndrome (LR-MDS): initial results from a phase 1b study
.
Blood
.
2024
;
144
(
Suppl 1
):
4595
.
50.
Zeidan
AM
,
Sekeres
MA
,
Al-Samkari
H
, et al
.
A Phase 2B, Open-label multicenter study of tebapivat (AG-946), a potent pyruvate kinase activator, in patients with anemia due to lower-risk myelodysplastic syndromes
.
Blood
.
2024
;
144
(
Suppl 1
):
6708
.
You do not currently have access to this content.