Combined hypomethylating agent (HMA) plus venetoclax (Ven) therapy enables most older patients with acute myeloid leukemia (AML) to achieve clinical remission. Key objectives are now aimed at developing new triplet combinations to circumvent mechanisms of resistance and extend remission longevity and, by extension, survival. Genomically agnostic approaches combine hypomethylating agents and venetoclax (HMA-Ven) with novel agents directed at oncogenic pathways critical for leukemic cell survival, proliferation, metabolism, or differentiation. Challenges faced in the development of new HMA-Ven triplets include competition from targeted inhibitors, biological heterogeneity of AML, potential for additive toxicity, reduced efficacy from modifications to the HMA-Ven backbone, and the higher bar for success in older AML beyond the current standard of care.

1.
Stone
A
,
Zukerman
T
,
Flaishon
L
,
Yakar
RB
,
Rowe
JM
.
Efficacy outcomes in the treatment of older or medically unfit patients with acute myeloid leukaemia: a systematic review and meta-analysis
.
Leuk Res
.
2019
;
82
:
36
-
42
.
2.
Récher
C
,
Röllig
C
,
Bérard
E
, et al
.
Long-term survival after intensive chemotherapy or hypomethylating agents in AML patients aged 70 years and older: a large patient data set study from European registries
.
Leukemia
.
2022
;
36
(
4
):
913
-
922
.
3.
Talati
C
,
Dhulipala
VC
,
Extermann
MT
, et al
.
Comparisons of commonly used front-line regimens on survival outcomes in patients aged 70 years and older with acute myeloid leukemia
.
Haematologica
.
2020
;
105
(
2
):
398
-
406
.
4.
Pratz
KW
,
Jonas
BA
,
Pullarkat
V
, et al
.
Long-term follow-up of VIALE-A: venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia
.
Am J Hematol
.
2024
;
99
(
4
):
615
-
624
.
5.
Wei
AH
,
Loo
S
,
Daver
N.
How I treat patients with AML using azacitidine and venetoclax
.
Blood
.
2025
;
145
(
12
):
1237
-
1250
.
6.
Karrar
O
,
Abdelmagid
M
,
Rana
M
, et al
.
Venetoclax duration (14 vs. 21 vs. 28 days) in combination with hypomethylating agent in newly diagnosed acute myeloid leukemia: comparative analysis of response, toxicity, and survival
.
Am J Hematol
.
2024
;
99
(
2
):
E63
-
E66
.
7.
Willekens
C
,
Bazinet
A
,
Chraibi
S
, et al
.
Reduced venetoclax exposure to 7 days vs standard exposure with hypomethylating agents in newly diagnosed AML patients
.
Blood Cancer J
.
2025
;
15
(
1
):
68
.
8.
Döhner
H
,
Pratz
KW
,
DiNardo
CD
, et al
.
Genetic risk stratification and outcomes among treatment-naive patients with AML treated with venetoclax and azacitidine
.
Blood
.
2024
;
144
(
21
):
2211
-
2222
.
9.
Konopleva
M
,
Popovic
R
,
Murray
L
, et al
.
Genetic Insights Into Acquired Resistance and Clonal Evolution in Venetoclax (Ven)-Based Therapy for Acute Myeloid Leukemia (AML)
.
EHA
;
2024
:
S145
.
10.
DiNardo
CD
,
Tiong
IS
,
Quaglieri
A
, et al
.
Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML
.
Blood
.
2020
;
135
(
11
):
791
-
803
.
11.
Shu
W
,
Yang
Q
,
He
D
, et al
.
Impact of KIT mutation on efficacy of venetoclax and hypomethylating agents in newly diagnosed acute myeloid leukemia
.
Eur J Med Res
.
2025
;
30
(
1
):
354
.
12.
Zhang
Q
,
Riley-Gillis
B
,
Han
L
, et al
.
Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
51
.
13.
Pei
S
,
Pollyea
DA
,
Gustafson
A
, et al
.
Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia
.
Cancer Discov
.
2020
;
10
(
4
):
536
-
551
.
14.
DiNardo
CD
,
Tiong
IS
,
Quaglieri
A
, et al
.
Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML
.
Blood
.
2020
;
135
(
11
):
791
-
803
.
15.
Moujalled
DM
,
Brown
FC
,
Chua
CC
, et al
.
Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia
.
Blood
.
2023
;
141
(
6
):
634
-
644
.
16.
Sharon
D
,
Jung
P
,
Sun
Y
, et al
.
DELE1 loss and dysfunctional integrated stress signaling in TP53 mutated AML is a novel pathway for venetoclax resistance
.
Hemasphere
.
2023
;
7
(
suppl
):e7041879.
17.
Roca-Portoles
A
,
Rodriguez-Blanco
G
,
Sumpton
D
, et al
.
Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition
.
Cell Death Dis
.
2020
;
11
(
8
):
616
.
18.
Stevens
BM
,
Jones
CL
,
Pollyea
DA
, et al
.
Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells
.
Nature Cancer
.
2020
;
1
(
12
):
1176
-
1187
.
19.
Moujalled
DM
,
Pomilio
G
,
Ghiurau
C
, et al
.
Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia
.
Leukemia
.
2019
;
33
(
4
):
905
-
917
.
20.
Diepstraten
ST
,
Yuan
Y
,
La Marca
JE
, et al
.
Putting the STING back into BH3-mimetic drugs for TP53-mutant blood cancers
.
Cancer Cell
.
2024
;
42
(
5
):
850
-
868
.e9868e9.
21.
McMahon
CM
,
Ferng
T
,
Canaani
J
, et al
.
Clonal selection with Ras pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia
.
Cancer Discov
.
2019
;
9
(
8
):
1050
-
1063
.
22.
Kennedy
VE
,
Peretz
CA
,
Walia
A
, et al
.
RAS pathway activation drives clonal selection and monocytic differentiation in FLT3 and BCL2 inhibitor resistance
.
bioRxiv
.
2025
. doi:10.1101/2025.02.02.636108.
23.
Chua
CC
,
Anstee
N
,
Flensburg
C
, et al
.
Venetoclax has potent efficacy in NPM1 mutated AML with acquired resistance associated with either perturbed pro-survival signalling or NPM1 wild-type populations
.
Blood
.
2023
;
142
:
423
.
24.
Short
NJ
,
Loghavi
S
,
Yilmaz
M
, et al
.
Long-term survival outcomes and cytogenetic/molecular patterns of relapse in adults with FLT3-mutated AML receiving frontline triplet therapy with a hypomethylating agent, venetoclax and FLT3 inhibitor
.
Blood
.
2024
;
144
:
220
.
25.
Schmalbrock
LK
,
Dolnik
A
,
Cocciardi
S
, et al
.
Clonal evolution of acute myeloid leukemia with FLT3-ITD mutation under treatment with midostaurin
.
Blood
.
2021
;
137
(
22
):
3093
-
3104
.
26.
Chua
CC
,
Hsu
B
,
Enjeti
AK
, et al
.
A phase II randomized trial comparing low-dose cytarabine and venetoclax+/-midostaurin in non-adverse cytogenetic risk acute myeloid leukemia: the ALLG AMLM25 intervene trial
.
Blood
.
2024
;
144
:
217
.
27.
Ikoma
Y
,
Nakamura
N
,
Kaneda
Y
, et al
.
Impact of myelodysplasia-related gene mutations and residual mutations at remission in venetoclax/azacitidine for AML
.
Leukemia
.
2025
;
39
(
6
):
1362
-
1367
.
28.
Jongen-Lavrencic
M
,
Grob
T
,
Hanekamp
D
, et al
.
Molecular minimal residual disease in acute myeloid leukemia
.
N Engl J Med
.
2018
;
378
(
13
):
1189
-
1199
.
29.
DiNardo
CD
,
Marvin-Peek
J
,
Loghavi
S
, et al
.
Outcomes of frontline triplet regimens with a hypomethylating agent, venetoclax, and isocitrate dehydrogenase inhibitor for intensive chemotherapy–ineligible patients with isocitrate dehydrogenase–mutated AML
.
J Clin Oncol
.
2025
;
43
(
24
):
2692
-
2699
.
30.
Singh Mali
R
,
Zhang
Q
,
DeFilippis
RA
, et al
.
Venetoclax combines synergistically with FLT3 inhibition to effectively target leukemic cells in FLT3-ITD+ acute myeloid leukemia models
.
Haematologica
.
2021
;
106
(
4
):
1034
-
1046
.
31.
Altman
JK
,
Sun
Z
,
Perl
AE
, et al
.
A randomized phase II study of venetoclax and HMA-based therapies for the treatment of older and unfit adults with newly diagnosed FLT3-mutated acute myeloid leukemia (AML): a myelomatch treatment trial: ECOG-ACRIN MM20A-EA02
.
Blood
.
2024
;
144
(
suppl 1
):2907.2901.
32.
De Gregori
S
,
Gelli
E
,
Capone
M
, et al
.
Pharmacokinetics of venetoclax co-administered with posaconazole in patients with acute myeloid leukemia
.
Pharmaceutics
.
2023
;
15
(
6
):
1680
.
33.
Rausch
CR
,
DiNardo
CD
,
Maiti
A
, et al
.
Duration of cytopenias with concomitant venetoclax and azole antifungals in acute myeloid leukemia
.
Cancer
.
2021
;
127
(
14
):
2489
-
2499
.
34.
Kawedia
JD
,
Rausch
CR
,
Liu
X
, et al
.
Prospective pharmacokinetic evaluation of venetoclax in AML supports re-evaluation of recommended dose adjustments with azole antifungals
.
Am J Hematol
.
2025
;
100
(
4
):
740
-
743
.
35.
DiNardo
CD
,
Jonas
BA
,
Pullarkat
V
, et al
.
Azacitidine and venetoclax in previously untreated acute myeloid leukemia
.
N Engl J Med
.
2020
;
383
(
7
):
617
-
629
.
36.
Wei
AH
,
Montesinos
P
,
Ivanov
V
, et al
.
Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial
.
Blood
.
2020
;
135
(
24
):
2137
-
2145
.
37.
Bhatnagar
S
,
Mukherjee
D
,
Salem
AH
,
Miles
D
,
Menon
RM
,
Gibbs
JP
.
Dose adjustment of venetoclax when co-administered with posaconazole: clinical drug-drug interaction predictions using a PBPK approach
.
Cancer Chemother Pharmacol
.
2021
;
87
(
4
):
465
-
474
.
38.
DiNardo
CD
,
Pratz
KW
,
Letai
A
, et al
.
Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study
.
Lancet Oncol
.
2018
;
19
(
2
):
216
-
228
.
39.
Sallman
DA
,
Al Malki
MM
,
Asch
AS
, et al
.
Magrolimab in combination with azacitidine in patients with higher-risk myelodysplastic syndromes: final results of a phase Ib study
.
J Clin Oncol
.
2023
;
41
(
15
):
2815
-
2826
.
40.
Greenberg
PL
,
Tuechler
H
,
Schanz
J
, et al
.
Revised international prognostic scoring system for myelodysplastic syndromes
.
Blood
.
2012
;
120
(
12
):
2454
-
2465
.
41.
Zeidner
JF
,
Sallman
DA
,
Récher
C
, et al
.
Magrolimab plus azacitidine vs physician's choice for untreated TP53-mutated acute myeloid leukemia: the ENHANCE-2 study
.
Blood
.
2025
;
146
(
5
):
590
-
600
.
42.
Bernard
E
,
Nannya
Y
,
Hasserjian
RP
, et al
.
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
.
Nat Med
.
2020
;
26
(
10
):
1549
-
1556
.
43.
Daver
N
,
Vyas
P
,
Huls
G
, et al
.
ENHANCE-3: venetoclax and azacitidine plus magrolimab or placebo in untreated AML unfit for intensive therapy
.
Blood
.
2025
;
146
(
5
):
601
-
611
.
44.
Burnett
AK
,
Hills
RK
,
Hunter
AE
, et al
; UK National Cancer Research Institute AML Working Group.
The addition of gemtuzumab ozogamicin to low-dose Ara-C improves remission rate but does not significantly prolong survival in older patients with acute myeloid leukaemia: results from the LRF AML14 and NCRI AML16 pick-a-winner comparison
.
Leukemia
.
2013
;
27
(
1
):
75
-
81
.
45.
Burnett
AK
,
Russell
NH
,
Hunter
AE
, et al
; UK National Cancer Research Institute AML Working Group.
Clofarabine doubles the response rate in older patients with acute myeloid leukemia but does not improve survival
.
Blood
.
2013
;
122
(
8
):
1384
-
1394
.
46.
DiNardo
CD
,
Jonas
BA
,
Pullarkat
V
, et al
.
Azacitidine and venetoclax in previously untreated acute myeloid leukemia
.
N Engl J Med
.
2020
;
383
(
7
):
617
-
629
.
47.
Wei
AH
,
Panayiotidis
P
,
Montesinos
P
, et al
.
Long-term follow-up of VIALE-C in patients with untreated AML ineligible for intensive chemotherapy
.
Blood
.
2022
;
140
(
25
):
2754
-
2756
.
48.
Metzeler
KH
,
Herold
T
,
Rothenberg-Thurley
M
, et al
; AMLCG Study Group.
Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia
.
Blood
.
2016
;
128
(
5
):
686
-
698
.
49.
Döhner
H
,
Dolnik
A
,
Tang
L
, et al
.
Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia treated with azacitidine or conventional care
.
Leukemia
.
2018
;
32
(
12
):
2546
-
2557
.
50.
Zeidan
A
,
Kovacsovics
T
,
Adriano
V
, et al
.
PS1483: Primary results STIMULUS-AML1: a large, international, phase II study of sabatolimab combined with azacitidine and venetoclax as frontline therapy for unfit acute myeloid leukemia (AML) patients (pts)
.
HemaSphere
.
2025
;
9
(
suppl 1
):
2433
-
2435
.
51.
Norsworthy
KJ
,
Gao
X
,
Ko
C-W
, et al
.
Response rate, event-free survival, and overall survival in newly diagnosed acute myeloid leukemia: US Food and Drug Administration trial-level and patient-level analyses
.
J Clin Oncol
.
2022
:
40
(
8
):
847
-
854
.
52.
Pratz
KW
,
Jonas
BA
,
Pullarkat
V
, et al
.
Measurable residual disease response and prognosis in treatment-naïve acute myeloid leukemia with venetoclax and azacitidine
.
J Clin Oncol
.
2022
;
40
(
8
):
855
-
865
.
53.
Othman
J
,
Tiong
IS
,
O'Nions
J
, et al
.
Molecular MRD is strongly prognostic in patients with NPM1-mutated AML receiving venetoclax-based nonintensive therapy
.
Blood
.
2024
;
143
(
4
):
336
-
341
.
54.
Brown
FC
,
Wang
X
,
Birkinshaw
R
, et al
.
Acquired BCL2 variants associated with venetoclax resistance in acute myeloid leukemia
.
Blood Adv
.
2025
;
9
(
1
):
127
-
131
.
55.
Katagiri
S
,
Chi
S
,
Minami
Y
, et al
.
Mutated KIT tyrosine kinase as a novel molecular target in acute myeloid leukemia
.
Int J Mol Sci
.
2022
;
23
(
9
):
4694
.
56.
Sango
J
,
Carcamo
S
,
Sirenko
M
, et al
.
RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax
.
Nature
.
2024
;
636
(
8041
):
241
-
250
.
57.
Maity
R
,
Neri
P
,
Donovan
J
, et al
.
Copy number gain of the MCL1 gene locus (1q21) and acquisition of BCL2 mutation mediate resistance to venetoclax in multiple myeloma (MM) patients
.
Clin Lymphoma Myeloma Leuk
.
2019
;
19
(
suppl 10
):
e22
-
e23
.
58.
Kuusanmäki
H
,
Dufva
O
,
Vähä-Koskela
M
, et al
.
Erythroid/megakaryocytic differentiation confers BCL-XL dependency and venetoclax resistance in acute myeloid leukemia
.
Blood
.
2023
;
141
(
13
):
1610
-
1625
.
59.
Esteve-Arenys
A
,
Roue
G.
BFL-1 expression determines the efficacy of venetoclax in MYC+/BCL2+ double hit lymphoma
.
Oncoscience
.
2018
;
5
(
3-4
):
59
-
61
.
60.
Carter
BZ
,
Mak
PY
,
Tao
W
, et al
.
Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and re-sensitizes acute myeloid leukemia to BCL-2 inhibition
.
Haematologica
.
2022
;
107
(
1
):
58
-
76
.
61.
Chen
X
,
Glytsou
C
,
Zhou
H
, et al
.
Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment
.
Cancer Discov
.
2019
;
9
(
7
):
890
-
909
.
62.
Thijssen
R
,
Diepstraten
ST
,
Moujalled
D
, et al
.
Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias
.
Blood
.
2021
;
137
(
20
):
2721
-
2735
.
63.
Pereira-Martins
D
,
Ortiz Rojas
CA
,
Weinhaeuser
I
, et al
.
CEBPA-driven expression of the transcriptionally inactive deltaTP73 isoform phenocopies TP53mutated poor risk and drug-resistant acute myeloid leukemia
.
Blood
.
2023
;
142
(
suppl 1
):
839
.
64.
Roboz
GJ
,
Pabst
T
,
Aribi
A
, et al
.
Safety and efficacy of cusatuzumab in combination with venetoclax and azacitidine (CVA) in patients with previously untreated acute myeloid leukemia (AML) who are not eligible for intensive chemotherapy; an open-label, multicenter, phase 1b study
.
Blood
.
2021
;
138
:
369
.
65.
Buecklein
V
,
Magno
G
,
Rausch
C
, et al
.
Abstract CT225: AARON: an ongoing open-label phase I/II study of relatlimab (anti-LAG-3) with nivolumab (anti-PD-1) in combination with azacitidine ± venetoclax for the treatment of patients with relapsed/refractory and non-fit patients with newly diagnosed acute myeloid leukemia—interim analysis
.
Cancer Res
.
2025
;
85
(
8
, suppl 2):
CT225
.
66.
Daver
N
,
Montesinos
P
,
Altman
JK
, et al
.
Pivekimab sunirine (PVEK, IMGN632), a CD123-targeting antibody-drug conjugate, in combination with azacitidine and venetoclax in patients with newly diagnosed acute myeloid leukemia
.
Blood
.
2023
;
142
(
suppl 1
):
2906
.
67.
Borate
U
,
McMahon
C
,
Fenaux
P
, et al
.
SELECT-AML-1: phase 2 randomized trial of tamibarotene in combination with venetoclax and azacitidine in adult patients with previously untreated AML with RARA overexpression, who are ineligible for standard induction therapy
.
Paper presented at: Society of Hematologic Oncology 12th Annual Meeting
;
Houston, TX
;
4 September 2024
.
You do not currently have access to this content.