Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of B-cell malignancies, but similar success in T-cell and myeloid leukemias has remained elusive due to unique biological and logistical barriers. T-cell acute lymphoblastic leukemia poses challenges such as fratricide, product contamination, and profound immunosuppression from T-cell aplasia. Gene editing, protein expression blockers, and antigen selection strategies have been employed to mitigate these risks, while allogeneic CAR T-cell platforms offer rapid deployment but carry risks of graft-versus-host disease and immune rejection. Early-phase trials targeting CD5 and CD7 have demonstrated promising response rates, particularly with gene-edited or bicistronic constructs, although toxicities and the need for consolidative hematopoietic stem cell transplantation remain significant hurdles. Similarly, CAR T-cell therapy for acute myeloid leukemia faces the dual obstacles of antigen nonspecificity and a highly immunosuppressive tumor microenvironment. Multiantigen targeting, logic-gated designs, and epitope editing have emerged to improve specificity and safety. Novel approaches to overcome the immunosuppressive milieu include checkpoint blockade and cytokine pathway modulation. Allogeneic and “off-the-shelf” CAR T-cell products are being developed to address manufacturing challenges in patients with rapidly progressive disease. Collectively, these advances highlight the potential of cellular therapies in high-risk leukemias and underscore the importance of continued innovation to improve outcomes in these historically treatment-refractory populations. Using a real-world case, we highlight the major challenges and innovative strategies shaping CAR T-cell therapy for T-cell acute lymphoblastic leukemia and acute myeloid leukemia.

1.
Ruella
M
,
Xu
J
,
Barrett
DM
, et al
.
Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell
.
Nat Med
.
2018
;
24
(
10
):
1499
-
1503
.
2.
Dourthe
ME
,
Baruchel
A
.
CAR T-cells for acute leukemias in children: current status, challenges, and future directions
.
Cancer Metastasis Rev
.
2025
;
44
(
2
):
47
.
3.
Ma
R
,
Woods
M
,
Burkhardt
P
, et al
.
Chimeric antigen receptor-induced antigen loss protects CD5.CART cells from fratricide without compromising on-target cytotoxicity
.
Cell Rep Med
.
2024
;
5
(
7
):
101628
.
4.
Sánchez-Martínez
D
,
Baroni
ML
,
Gutierrez-Agüera
F
, et al
.
Fratricide- resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia
.
Blood
.
2019
;
133
(
21
):
2291
-
2304
.
5.
Ghobadi
A
,
Aldoss
I
,
Maude
SL
, et al
.
Phase 1/2 trial of anti-CD7 allogeneic WU-CART-007 in patients with relapsed/refractory T-cell malignancies
.
Blood
.
2025
;
146
(
10
):
1163
-
1173
.
6.
Chiesa
R
,
Georgiadis
C
,
Syed
F
, et al
;
Base-Edited CAR T Group
.
Base- edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia
.
N Engl J Med
.
2023
;
389
(
10
):
899
-
910
.
7.
Pan
J
,
Tan
Y
,
Wang
G
, et al
.
Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial
.
J Clin Oncol
.
2021
;
39
(
30
):
3340
-
3351
.
8.
Png
YT
,
Vinanica
N
,
Kamiya
T
,
Shimasaki
N
,
Coustan-Smith
E
,
Campana
D.
Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies
.
Blood Adv
.
2017
;
1
(
25
):
2348
-
2360
.
9.
Caracciolo
D
,
Mancuso
A
,
Polerà
N
, et al
.
The emerging scenario of immunotherapy for T-cell acute lymphoblastic leukemia: advances, challenges and future perspectives
.
Exp Hematol Oncol
.
2023
;
12
(
1
):
5
.
10.
Cwynarski
K
,
Iacoboni
G
,
Tholouli
E
, et al
.
TRBC1-CAR T cell therapy in peripheral T cell lymphoma: a phase 1/2 trial
.
Nat Med
.
2025
;
31
(
1
):
137
-
143
.
11.
Mehta
PH
,
Fiorenza
S
,
Koldej
RM
,
Jaworowski
A
,
Ritchie
DS
,
Quinn
KM
.
T cell fitness and autologous CAR T cell therapy in haematologic malignancy
.
Front Immunol
.
2021
;
12
:
780442
.
12.
Diorio
C
,
Murray
R
,
Naniong
M
, et al
.
Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL
.
Blood
.
2022
;
140
(
6
):
619
-
629
.
13.
Mo
F
,
Watanabe
N
,
Omdahl
KI
, et al
.
Engineering T cells to suppress acute GVHD and leukemia relapse after allogeneic hematopoietic stem cell transplantation
.
Blood
.
2023
;
141
(
10
):
1194
-
1208
.
14.
You
F
,
Wang
Y
,
Jiang
L
, et al
.
A novel CD7 chimeric antigen receptor- modified NK-92MI cell line targeting T-cell acute lymphoblastic leukemia
.
Am J Cancer Res
.
2019
;
9
(
1
):
64
-
78
.
15.
Zhang
Y
,
Zhou
W
,
Yang
J
,
Yang
J
,
Wang
W
.
Chimeric antigen receptor engineered natural killer cells for cancer therapy
.
Exp Hematol Oncol
.
2023
;
12
(
1
):
70
.
16.
Pölönen
P
,
Mullighan
CG
,
Teachey
DT
.
Classification and risk stratification in T-lineage acute lymphoblastic leukemia
.
Blood
.
2025
;
145
(
14
):
1464
-
1474
.
17.
Maciocia
N
,
Wade
B
,
Maciocia
P.
CAR T-cell therapies for T-cell malignancies: does cellular immunotherapy represent the best chance of cure?
Blood Adv
.
2025
;
9
(
4
):
913
-
923
.
18.
Hill
LC
,
Rouce
RH
,
Wu
MJ
, et al
.
Antitumor efficacy and safety of unedited autologous CD5.CAR T cells in relapsed/refractory mature T-cell lymphomas
.
Blood
.
2024
;
143
(
13
):
1231
-
1241
.
19.
Pan
J
,
Tan
Y
,
Shan
L
, et al
.
Allogeneic CD5-specific CAR-T therapy for relapsed/refractory T-ALL: a phase 1 trial
.
Nat Med
.
2025
;
31
(
1
):
126
-
136
.
20.
Tan
Y
,
Shan
L
,
Zhao
L
, et al
.
Long-term follow-up of donor-derived CD7 CAR T-cell therapy in patients with T-cell acute lymphoblastic leukemia
.
J Hematol Oncol
.
2023
;
16
(
1
):
34
.
21.
Oh
BLZ
,
Shimasaki
N
,
Coustan-Smith
E
, et al
.
Fratricide-resistant CD7-CAR T cells in T-ALL
.
Nat Med
.
2024
;
30
(
12
):
3687
-
3696
.
22.
Hu
Y
,
Zhang
M
,
Yang
T
, et al
.
Sequential CD7 CAR T-cell therapy and allogeneic HSCT without GVHD prophylaxis
.
N Engl J Med
.
2024
;
390
(
16
):
1467
-
1480
.
23.
Haubner
S
,
Subklewe
M
,
Sadelain
M.
Honing CAR T cells to tackle acute myeloid leukemia
.
Blood
.
2025
;
145
(
11
):
1113
-
1125
.
24.
Naik
S
,
Velasquez
MP
,
Gottschalk
S.
Chimeric antigen receptor T-cell therapy in childhood acute myeloid leukemia: how far are we from a clinical application?
Haematologica
.
2024
;
109
(
6
):
1656
-
1667
.
25.
Jambon
S
,
Sun
J
,
Barman
S
, et al
.
CD33-CD123 IF-THEN gating reduces toxicity while enhancing the specificity and memory phenotype of AML- targeting CAR-T cells
.
Blood Cancer Discov
.
2025
;
6
(
1
):
55
-
72
.
26.
El Khawanky
N
,
Hughes
A
,
Yu
W
, et al
.
Demethylating therapy increases anti-CD123 CAR T cell cytotoxicity against acute myeloid leukemia
.
Nat Commun
.
2021
;
12
(
1
):
6436
.
27.
Marques-Piubelli
ML
,
Kumar
B
,
Basar
R
, et al
.
Increased expression of CD70 in relapsed acute myeloid leukemia after hypomethylating agents
.
Virchows Arch
.
2024
;
485
(
5
):
937
-
941
.
28.
Appelbaum
J
,
Price
AE
,
Oda
K
, et al
.
Drug-regulated CD33-targeted CAR T cells control AML using clinically optimized rapamycin dosing
.
J Clin Invest
.
2024
;
134
(
9
):
e162593
.
29.
Weber
EW
,
Lynn
RC
,
Sotillo
E
,
Lattin
J
,
Xu
P
,
Mackall
CL
.
Pharmacologic control of CAR-T cell function using dasatinib
.
Blood Adv
.
2019
;
3
(
5
):
711
-
717
.
30.
Magnani
CF
,
Myburgh
R
,
Brunn
S
, et al
.
Anti-CD117 CAR T cells incorporating a safety switch eradicate human acute myeloid leukemia and hematopoietic stem cells
.
Mol Ther Oncolytics
.
2023
;
30
:
56
-
71
.
31.
Sommer
C
,
Cheng
H-Y
,
Nguyen
D
, et al
.
Allogeneic FLT3 CAR T cells with an off-switch exhibit potent activity against AML and can be depleted to expedite bone marrow recovery
.
Mol Ther
.
2020
;
28
(
10
):
2237
-
2251
.
32.
Foster
MC
,
Savoldo
B
,
Lau
W
, et al
.
Utility of a safety switch to abrogate CD19.CAR T-cell-associated neurotoxicity
.
Blood
.
2021
;
137
(
23
):
3306
-
3309
.
33.
Lin
H
,
Cheng
J
,
Zhu
L
, et al
.
Anti-CD5 CAR-T cells with a tEGFR safety switch exhibit potent toxicity control
.
Blood Cancer J
.
2024
;
14
(
1
):
98
.
34.
Tettamanti
S
,
Pievani
A
,
Biondi
A
,
Dotti
G
,
Serafini
M.
Catch me if you can: how AML and its niche escape immunotherapy
.
Leukemia
.
2022
;
36
(
1
):
13
-
22
.
35.
Epperly
R
,
Gottschalk
S
,
Velasquez
MP
.
A bump in the road: how the hostile AML microenvironment affects CAR T Cell therapy
.
Front Oncol
.
2020
;
10
:
262
.
36.
Alvarez Calderon
F
,
Kang
BH
,
Kyrysyuk
O
, et al
.
Targeting of the CD161 inhibitory receptor enhances T-cell-mediated immunity against hematological malignancies
.
Blood
.
2024
;
143
(
12
):
1124
-
1138
.
37.
Lin
G
,
Zhang
Y
,
Yu
L
,
Wu
D
.
Cytotoxic effect of CLL-1 CAR-T cell immunotherapy with PD-1 silencing on relapsed/refractory acute myeloid leukemia
.
Mol Med Rep
.
2021
;
23
(
3
):
208
.
38.
Wang
R
,
Feng
W
,
Wang
H
, et al
.
Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model
.
Cancer Lett
.
2020
;
469
:
151
-
161
.
39.
Bhagwat
AS
,
Torres
L
,
Shestova
O
, et al
.
Cytokine-mediated CAR T therapy resistance in AML
.
Nat Med
.
2024
;
30
(
12
):
3697
-
3708
.
40.
Shah
NN
,
Tasian
SK
,
Kohler
ME
, et al
.
CD33 CAR T-cells (CD33CART) for children and young adults with relapsed/refractory AML: dose-escalation results from a phase I/II multicenter trial
.
Blood
.
2023
;
142
(suppl
1
):
771
.
41.
Naik
S
,
Madden
R
,
Lipsitt
A
, et al
.
Preliminary results from a phase 1 trial showing safety and anti-leukemic activity of CD123-CAR T cells in pediatric patients with AML
.
Transplant Cell Ther
.
2023
;
29
(
2
):S91.
42.
Pei
K
,
Xu
H
,
Wang
P
, et al
.
Anti-CLL1-based CAR T-cells with 4-1-BB or CD28/CD27 stimulatory domains in treating childhood refractory/relapsed acute myeloid leukemia
.
Cancer Med
.
2023
;
12
(
8
):
9655
-
9661
.
43.
Zhang
H
,
Bu
C
,
Peng
Z
, et al
.
Characteristics of anti-CLL1 based CAR-T therapy for children with relapsed or refractory acute myeloid leukemia: the multi-center efficacy and safety interim analysis
.
Leukemia
.
2022
;
36
(
11
):
2596
-
2604
.
44.
Sallman
DA
,
Kerre
T
,
Havelange
V
, et al
.
CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial
.
Lancet Haematol
.
2023
;
10
(
3
):
e191
-
e202
.
You do not currently have access to this content.