Red cell disorders may present with overlapping clinical presentation and laboratory findings; in addition, complete phenotypic characterization of the patients' red cells is more challenging in the most severe cases, which are typically transfusion-dependent. The increasing availability of next-generation sequencing over the past 2 decades, initially with focused gene panels for certain disease groups, optimized to include the known coding and noncoding pathogenic variants for those diseases, has improved the accuracy and timeliness of diagnosis. The ongoing expansion to whole-exome and genome sequencing has been revealing unexpected, rare, overlooked, or previously unknown genetic disorders and expands our knowledge on the pathophysiology of known and novel human diseases. The vast information gained by genetic sequencing should still be checked against the phenotype to confirm agreement. A positive result does not always guarantee that the cause of the patient's symptoms has been identified; phenotype-genotype correlation is critical. In our era of targeted treatments and progress in gene therapy, utilization of genetic workup to improve the timing and precision of diagnosis is crucial to ensure that patients receive effective management, improving their outcome.

1.
Kalfa
TA
.
Diagnosis and clinical management of red cell membrane disorders
.
Hematology Am Soc Hematol Educ Program
.
2021
;
2021
(
1
):
331
-
340
.
2.
Achille
I
,
Immacolata
A
,
Wilma
B
, et al.
Recommendations regarding splenectomy in hereditary hemolytic anemias
.
Haematologica
.
2017
;
102
(
8
):
1304
-
1313
.
3.
Risinger
M
,
Kalfa
TA
.
Red cell membrane disorders: structure meets function
.
Blood
.
2020
;
136
(
11
):
1250
-
1261
.
4.
Mohandas
N.
Inherited hemolytic anemia: a possessive beginner's guide
.
Hematology Am Soc Hematol Educ Program
.
2018
;
2018
(
1
):
377
-
381
.
5.
Fermo
E
,
Vercellati
C
,
Marcello
AP
, et al.
Targeted next generation sequencing and diagnosis of congenital hemolytic anemias: a three years experience monocentric study
.
Front Physiol
.
2021
;
12
:
684569
.
6.
Roy
NB
,
Wilson
EA
,
Henderson
S
, et al.
A novel 33-gene targeted resequencing panel provides accurate, clinical-grade diagnosis and improves patient management for rare inherited anaemias
.
Br J Haematol
.
2016
;
175
(
2
):
318
-
330
.
7.
Arnaud
L
,
Saison
C
,
Helias
V
, et al.
A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia
.
Am J Hum Genet
.
2010
;
87
(
5
):
721
-
727
.
8.
Varricchio
L
,
Planutis
A
,
Manwani
D
, et al.
Genetic disarray follows mutant KLF1-E325K expression in a congenital dyserythropoietic anemia patient
.
Haematologica
.
2019
;
104
(
12
):
2372
-
2380
.
9.
Perkins
AC
,
Bieker
J.
Congenital anemia phenotypes due to KLF1 mutations
.
J Pediatr Hematol Oncol
.
2021
;
43
(
1
):
e148
-
e149
.
10.
Kent
MW
,
Oliveira
JL
,
Hoyer
JD
, et al.
Hb grand junction (HBB: c.348_349delinsG; p.His117IlefsX42): a new hyperunstable hemoglobin variant
.
Hemoglobin
.
2014
;
38
(
1
):
8
-
12
.
11.
Rizzuto
V
,
Koopmann
TT
,
Blanco-Álvarez
A
, et al.
Usefulness of NGS for diagnosis of dominant beta-thalassemia and unstable hemoglobinopathies in five clinical cases
.
Front Physiol
.
2021
;
12
:
628236
.
12.
Risinger
M
,
Emberesh
M
,
Kalfa
TA
.
Rare hereditary hemolytic anemias: diagnostic approach and considerations in management
.
Hematol Oncol Clin North Am
.
2019
;
33
(
3
):
373
-
392
.
13.
Thuret
I
,
Bardakdjian
J
,
Badens
C
, et al.
Priapism following splenectomy in an unstable hemoglobin: hemoglobin Olmsted beta 141 (H19) Leu—>Arg
.
Am J Hematol
.
1996
;
51
(
2
):
133
-
136
.
14.
Haque
A
,
Quint
DJ
,
Castle
VP
,
Leber
SM
.
Another rare unstable hemoglobinopathy: hemoglobin Casper/Southampton associated with moyamoya disease
.
Cerebrovasc Dis Extra
.
2015
;
5
(
2
):
52
-
54
.
15.
Fawaz
N
,
Beshlawi
I
,
Alqasim
A
, et al.
Novel PKLR missense mutation (A300P) causing pyruvate kinase deficiency in an Omani Kindred-PK deficiency masquerading as congenital dyserythropoietic anemia
.
Clin Case Rep
.
2022
;
10
(
2
):
e05315
.
16.
Russo
R
,
Andolfo
I
,
Manna
F
, et al.
Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias
.
Am J Hematol
.
2018
;
93
(
5
):
672
-
682
.
17.
Shefer Averbuch
N
,
Steinberg-Shemer
O
,
Dgany
O
, et al.
Targeted next generation sequencing for the diagnosis of patients with rare congenital anemias
.
Eur J Haematol
.
2018
;
101
(
3
):
297
-
304
.
18.
Al-Samkari
H
,
Galactéros
F
,
Glenthøj
A
, et al
;
Activate investigators
.
mitapivat versus placebo for pyruvate kinase deficiency
.
N Engl J Med
.
2022
;
386
(
15
):
1432
-
1442
.
19.
Al-Samkari
H
,
Shehata
N
,
Lang-Robertson
K
, et al.
Diagnosis and management of pyruvate kinase deficiency: international expert guidelines
.
Lancet Haematol
.
2024
;
11
(
3
):
e228
-
e239
.
20.
Schwarz
K
,
Iolascon
A
,
Verissimo
F
, et al.
Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II
.
Nat Genet
.
2009
;
41
(
8
):
936
-
940
.
21.
Russo
R
,
Gambale
A
,
Langella
C
,
Andolfo
I
,
Unal
S
,
Iolascon
A.
Retrospective cohort study of 205 cases with congenital dyserythropoietic anemia type II: definition of clinical and molecular spectrum and identification of new diagnostic scores
.
Am J Hematol
.
2014
;
89
(
10
):
E169
-
E175
.
22.
Iolascon
A
,
Delaunay
J
,
Wickramasinghe
SN
,
Perrotta
S
,
Gigante
M
,
Camaschella
C.
Natural history of congenital dyserythropoietic anemia type II
.
Blood
.
2001
;
98
(
4
):
1258
-
1260
.
23.
Denecke
J
,
Kranz
C
,
Nimtz
M
, et al.
Characterization of the N-glycosylation phenotype of erythrocyte membrane proteins in congenital dyserythropoietic anemia type II (CDA II/HEMPAS)
.
Glycoconj J
.
2008
;
25
(
4
):
375
-
382
.
24.
Chonat
S
,
McLemore
ML
,
Bunting
ST
,
Nortman
S
,
Zhang
K
,
Kalfa
TA
.
Congenital dyserythropoietic anaemia type I diagnosed in a young adult with a history of splenectomy in childhood for presumed haemolytic anaemia
.
Br J Haematol
.
2018
;
182
(
1
):
10
.
25.
Roy
NBA
,
Babbs
C.
The pathogenesis, diagnosis and management of congenital dyserythropoietic anaemia type I
.
Br J Haematol
.
2019
;
185
(
3
):
436
-
449
.
26.
Niss
O
,
Lorsbach
RB
,
Berger
M
, et al
;
CDAR consortium
.
Congenital dyserythropoietic anemia type I: first report from the congenital dyserythropoietic anemia registry of North America (CDAR)
.
Blood Cells Mol Dis
.
2021
;
87
:
102534
.
27.
Iolascon
A
,
Andolfo
I
,
Barcellini
W
, et al
;
Working Study Group on Red Cells and Iron of the EHA
.
Recommendations regarding splenectomy in hereditary hemolytic anemias
.
Haematologica
.
2017
;
102
(
8
):
1304
-
1313
.
28.
Fermo
E
,
Vercellati
C
,
Marcello
AP
, et al.
Hereditary xerocytosis due to mutations in PIEZO1 gene associated with heterozygous pyruvate kinase deficiency and beta-thalassemia trait in two unrelated families
.
Case Rep Hematol
.
2017
;
2017
:
2769570
.
29.
Picard
V
,
Guitton
C
,
Thuret
I
, et al.
Clinical and biological features in PIEZO1-hereditary xerocytosis and Gardos channelopathy: a retrospective series of 126 patients
.
Haematologica
.
2019
;
104
(
8
):
1554
-
1564
.
30.
Liang
P
,
Zhang
Y
,
Wan
YCS
, et al.
Deciphering and disrupting PIEZO1-TMEM16F interplay in hereditary xerocytosis
.
Blood
.
2024
;
143
(
4
):
357
-
369
.
31.
Andolfo
I
,
Monaco
V
,
Cozzolino
F
, et al.
Proteome alterations in erythrocytes with PIEZO1 gain-of-function mutations
.
Blood Adv
.
2023
;
7
(
12
):
2681
-
2693
.
32.
Grace
RF
,
van Beers
EJ
,
Vives Corrons
J-L
, et al.
The pyruvate kinase deficiency global longitudinal (Peak) registry: rationale and study design
.
BMJ Open
.
2023
;
13
(
3
):
e063605
.
33.
Furutani
E
,
Liu
S
,
Galvin
A
, et al.
Hematologic complications with age in Shwachman-Diamond syndrome
.
Blood Adv
.
2022
;
6
(
1
):
297
-
306
.
34.
Yenwongfai
LN
,
Arora
R
,
Smith
AP
, et al.
Pediatric myelofibrosis due to compound heterozygous MPIG6B mutations in a patient of European ancestry
.
Pediatr Blood Cancer
.
2023
;
70
(
3
):
e30023
.
35.
Hofmann
I
,
Geer
MJ
,
Vögtle
T
, et al.
Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized mice
.
Blood
.
2018
;
132
(
13
):
1399
-
1412
.
36.
Melhem
M
,
Abu-Farha
M
,
Antony
D
, et al.
Novel G6B gene variant causes familial autosomal recessive thrombocytopenia and anemia
.
Eur J Haematol
.
2017
;
98
(
3
):
218
-
227
.
37.
Risinger
M
,
Zhang
W
,
Kalfa
TA
.
Advances on the genetic basis of red cell membrane disorders
.
Curr Opin Hematol
.
2025
;
32
(
5
):
279
-
286
.
38.
Da Costa
L
,
Galimand
J
,
Fenneteau
O
,
Mohandas
N.
Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders
.
Blood Rev
.
2013
;
27
(
4
):
167
-
178
.
39.
Mohandas
N
,
Clark
MR
,
Jacobs
MS
,
Shohet
SB
.
Analysis of factors regulating erythrocyte deformability
.
J Clin Invest
.
1980
;
66
(
3
):
563
-
573
.
You do not currently have access to this content.