Although the management of β-thalassemia has improved significantly, patients still suffer from many complications, including thrombotic events. A hypercoagulable state has been demonstrated in these conditions, particularly in non–transfusion-dependent β-thalassemia, because of disease-specific contributors that play a role in the pathogenesis, including reactive oxygen species, pathological erythroid cells, circulating microparticles, free heme, and endothelial activation. Splenectomy further contributes to the complexity of thrombotic risk in such patients, together with emerging complications related to increased survival, such as atrial fibrillation. Moreover, in recent years the role of new drugs in further modifying the thrombotic risk of these patients has been demonstrated, as in the case of luspatercept. However, its role still needs to be elucidated. The currently available prevention and clinical management of thrombosis in thalassemia patients mainly relies on the international guidelines for the general population, although, given the peculiar pathophysiology and the disease-related risk factors, robust data and evidence are necessary to develop dedicated guidelines.

1.
Taher
AT
,
Musallam
KM
,
Cappellini
MD
.
Beta-thalassemias
.
N Engl J Med
.
2021
;
384
(
8
):
727
-
743
.
2.
Musallam
KM
,
Cappellini
MD
,
Porter
JB
, et al.
TIF guidelines for the management of transfusion-dependent beta-thalassemia
.
Hemasphere
.
2025
;
9
(
3
):
e70095
.
3.
Taher
A
,
Isma'eel
H
,
Mehio
G
, et al.
Prevalence of thromboembolic events among 8,860 patients with thalassaemia major and intermedia in the Mediterranean area and Iran
.
Thromb Haemost
.
2006
;
96
(
4
):
488
-
491
.
4.
Di Stefano
V
,
Gianesin
B
,
Bertini
M
, et al.
Atrial fibrillation prevalence and its management in transfusion-dependent thalassemias: the FATHAL study
.
Blood
.
2023
;
142
(suppl
1
):
2472
.
5.
Forni
GL
,
Gianesin
B
,
Musallam
KM
, et al.
Overall and complication-free survival in a large cohort of patients with beta-thalassemia major followed over 50 years
.
Am J Hematol
.
2023
;
98
(
3
):
381
-
387
.
6.
Musallam
KM
,
Cappellini
MD
,
Daar
S
,
Taher
AT
.
Morbidity-free survival and hemoglobin level in non-transfusion-dependent beta-thalassemia: a 10-year cohort study
.
Ann Hematol
.
2022
;
101
(
1
):
203
-
204
.
7.
Bou-Fakhredin
R
,
Cappellini
MD
,
Taher
AT
,
De Franceschi
L
.
Hypercoagulability in hemoglobinopathies: decoding the thrombotic threat
.
Am J Hematol
.
2025
;
100
(
1
):
103
-
115
.
8.
Taher
AT
,
Musallam
KM
,
Karimi
M
, et al.
Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the OPTIMAL CARE study
.
Blood
.
2010
;
115
(
10
):
1886
-
1892
.
9.
Karimi
M
,
Toosi
F
,
Haghpanah
S
,
Pishdad
P
,
Avazpour
A
,
Rachmilewitz
EA
.
The frequency of silent cerebral ischemia in patients with transfusion-dependent beta-thalassemia major
.
Ann Hematol
.
2016
;
95
(
1
):
135
-
139
.
10.
Pazgal
I
,
Inbar
E
,
Cohen
M
,
Shpilberg
O
,
Stark
P
.
High incidence of silent cerebral infarcts in adult patients with beta thalassemia major
.
Thromb Res
.
2016
;
144
:
119
-
122
.
11.
Musallam
KM
,
Vitrano
A
,
Meloni
A
, et al.
Survival and causes of death in 2,033 patients with non-transfusion-dependent beta-thalassemia
.
Haematologica
.
2021
;
106
(
9
):
2489
-
2492
.
12.
Singer
ST
,
Kuypers
F
,
Fineman
J
, et al.
Elevated tricuspid regurgitant jet velocity in subgroups of thalassemia patients: insight into pathophysiology and the effect of splenectomy
.
Ann Hematol
.
2014
;
93
(
7
):
1139
-
1148
.
13.
Bou-Fakhredin
R
,
De Franceschi
L
,
Motta
I
,
Eid
AA
,
Taher
AT
,
Cappellini
MD
.
Redox balance in beta-thalassemia and sickle cell disease: a love and hate relationship
.
Antioxidants (Basel)
.
2022
;
11
(
5
):
967
.
14.
Ferru
E
,
Pantaleo
A
,
Carta
F
, et al.
Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase
.
Haematologica
.
2014
;
99
(
3
):
570
-
578
.
15.
Aggeli
C
,
Antoniades
C
,
Cosma
C
, et al.
Endothelial dysfunction and inflammatory process in transfusion-dependent patients with beta- thalassemia major
.
Int J Cardiol
.
2005
;
105
(
1
):
80
-
84
.
16.
Butthep
P
,
Rummavas
S
,
Wisedpanichkij
R
,
Jindadamrongwech
S
,
Fucharoen
S
,
Bunyaratvej
A
.
Increased circulating activated endothelial cells, vascular endothelial growth factor, and tumor necrosis factor in thalassemia
.
Am J Hematol
.
2002
;
70
(
2
):
100
-
106
.
17.
Vinchi
F
,
Tolosano
E
.
Therapeutic approaches to limit hemolysis-driven endothelial dysfunction: scavenging free heme to preserve vasculature homeostasis
.
Oxid Med Cell Longev
.
2013
;
2013
:
396527
.
18.
Schaer
DJ
,
Buehler
PW
,
Alayash
AI
,
Belcher
JD
,
Vercellotti
GM
.
Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins
.
Blood
.
2013
;
121
(
8
):
1276
-
1284
.
19.
Kato
GJ
,
Taylor
JG
.
Pleiotropic effects of intravascular haemolysis on vascular homeostasis
.
Br J Haematol
.
2010
;
148
(
5
):
690
-
701
.
20.
Vinchi
F
,
Sparla
R
,
Passos
ST
, et al.
Vasculo-toxic and pro-inflammatory action of unbound haemoglobin, haem and iron in transfusion-dependent patients with haemolytic anaemias
.
Br J Haematol
.
2021
;
193
(
3
):
637
-
658
.
21.
De Caterina
R
,
Libby
P
,
Peng
HB
, et al.
Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines
.
J Clin Invest
.
1995
;
96
(
1
):
60
-
68
.
22.
Kheansaard
W
,
Phongpao
K
,
Paiboonsukwong
K
,
Pattanapanyasat
K
,
Chaichompoo
P
,
Svasti
S
.
Microparticles from beta-thalassaemia/HbE patients induce endothelial cell dysfunction
.
Sci Rep
.
2018
;
8
(
1
):
13033
.
23.
Goldschmidt
N
,
Spectre
G
,
Brill
A
, et al.
Increased platelet adhesion under flow conditions is induced by both thalassemic platelets and red blood cells
.
Thromb Haemost
.
2008
;
100
(
5
):
864
-
870
.
24.
Eldor
A
,
Lellouche
F
,
Goldfarb
A
,
Rachmilewitz
EA
,
Maclouf
J
.
In vivo platelet activation in beta-thalassemia major reflected by increased platelet-thromboxane urinary metabolites
.
Blood
.
1991
;
77
(
8
):
1749
-
1753
.
25.
Morsilli
O
,
Gu erriero
R
,
Lulli
V
, et al.
Platelet and megakaryocyte CD40L expression in beta-thalassemic patients
.
Thromb Res
.
2020
;
189
:
108
-
111
.
26.
Klaihmon
P
,
Phongpao
K
,
Kheansaard
W
, et al.
Microparticles from splenectomized beta-thalassemia/HbE patients play roles on procoagulant activities with thrombotic potential
.
Ann Hematol
.
2017
;
96
(
2
):
189
-
198
.
27.
Nigam
N
,
Singh
PK
,
Agrawal
M
,
Nigam
S
,
Gupta
H
,
Saxena
S
.
MTHFR C677T, prothrombin G20210A, and factor V Leiden (G1691A) polymorphism and beta-thalassemia risk: a meta-analysis
.
Cureus
.
2020
;
12
(
9
):
e10743
.
28.
Chinsuwan
J
,
Klaihmon
P
,
Kadegasem
P
, et al.
High prevalence of antiphospholipid antibodies in children with non-transfusion dependent thalassemia and possible correlations with microparticles
.
Mediterr J Hematol Infect Dis
.
2020
;
12
(
1
):
e2020071
.
29.
Cappellini
MD
,
Viprakasit
V
,
Georgiev
P
, et al.
Long-term efficacy and safety of luspatercept for the treatment of anaemia in patients with transfusion-dependent beta-thalassaemia (BELIEVE): final results from a phase 3 randomised trial
.
Lancet Haematol
.
2025
;
12
(
3
):
e180
-
e189
.
30.
Taher
T
,
Viprakasit
V
,
Kattamis
A
, et al.
Luspatercept for the treatment of anemia in non-transfusion-dependent β-thalassemia: final safety and efficacy data from the BEYOND trial
.
Blood
.
2023
;
142
(suppl
1
):
3847
.
31.
Taher
AT
,
Musallam
KM
,
Cappellini
MD
.
Guidelines for the Management of Non-Transfusion-Dependent β-Thalassaemia
[Internet]. (3) rd ed.
Thalassaemia International Federation
;
2023
.
32.
Musallam
KM
,
Barella
S
,
Origa
R
, et al.
Pretransfusion hemoglobin level and mortality in adults with transfusion-dependent beta-thalassemia
.
Blood
.
2024
;
143
(
10
):
930
-
932
.
33.
Taher
AT
,
Cappellini
MD
,
Musallam
KM
.
Development of a thalassemia-related thrombosis risk scoring system
.
Am J Hematol
.
2019
;
94
(
8
):
E207
-
E209
.
34.
Taher
AT
,
Cappellini
MD
,
Kattamis
A
, et al.
Luspatercept for the treatment of anaemia in non-transfusion-dependent beta-thalassaemia (BEYOND): a phase 2, randomised, double-blind, multicentre, placebo-controlled trial
.
Lancet Haematol
.
2022
;
9
(
10
):
e733
-
e744
.
35.
Panzieri
DL
,
Consonni
D
,
Scaramellini
N
, et al.
Real-world efficacy and safety of luspatercept and predictive factors of response in patients with transfusion-dependent beta-thalassemia
.
Am J Hematol
.
2024
;
99
(
12
):
2395
-
2398
.
36.
Shastry
S
,
Mohan
G
,
Pa
P
,
Mundkur
S
,
Kurien
A
,
Ahammad
J
.
Role of thromboelastogram in monitoring the activation of the coagulation pathway and assessing the associated risk factors for hypercoagulable state in transfusion dependent thalassemia patients
.
Transfus Apher Sci
.
2023
;
62
(
2
):
103583
.
37.
Pinto
VM
,
Cima
R
,
Di Maggio
R
, et al.
Thalassemias and sickle cell diseases in pregnancy: SITE good practice
.
J Clin Med
.
2025
;
14
(
3
).
38.
Tomasdottir
M
,
Friberg
L
,
Hijazi
Z
,
Lindback
J
,
Oldgren
J
.
Risk of ischemic stroke and utility of CHA(2) DS(2)-VASc score in women and men with atrial fibrillation
.
Clin Cardiol
.
2019
;
42
(
10
):
1003
-
1009
.
39.
Malagu
M
,
Longo
F
,
Marchini
F
, et al.
Non-vitamin K antagonist oral anticoagulants in patients with beta-thalassemia
.
Biology (Basel)
.
2023
;
12
(
4
):
491
.
40.
Bahrani
S
,
Teimouri-Jervekani
Z
,
Sadeghi
M
.
Thrombotic events and anticoagulants in beta-thalassemia patients with focus on anticoagulants for atrial fibrillation: a brief review
.
Curr Probl Cardiol
.
2022
;
47
(
9
):
100912
.
41.
Kanavaki
A
,
Spengos
K
,
Moraki
M
, et al.
Serum levels of S100b and NSE proteins in patients with non-transfusion-dependent thalassemia as biomarkers of brain ischemia and cerebral vasculopathy
.
Int J Mol Sci
.
2017
;
18
(
12
):
2724
.
42.
Amid
A
,
Lal
A
,
Coates
TD
,
Fucharoen
S
.
Guidelines for the Management of α-Thalassaemia
.
1
st ed.
Thalassaemia International Federation
;
2023
.
You do not currently have access to this content.