Adoptive T-cell therapy has emerged as a transformative modality in cancer immunotherapy, building upon foundational principles established in allogeneic hematopoietic stem cell transplantation. In this setting, while donor T cells mediate curative graft-versus-leukemia and graft-versus-infection effects, their alloreactivity poses significant risks. Gene transfer strategies—such as suicide gene insertion—have enabled the safer use of donor lymphocytes by allowing the selective elimination of T cells in case of adverse events. With this initial gene therapy approach, several lessons on the function, persistence, safety, and efficacy of engineered T cells were learned. More recently, advances in genome editing technologies have enabled precise manipulation of T-cell genomes and function, including disruption of endogenous T-cell receptors (TCRs) and insertion of tumor-specific receptors, such as chimeric antigen receptors and tumor-specific TCRs. Integration of T-cell manufacturing protocols optimized for persistence and resistance to immune suppression—largely facilitated by the possibility to simultaneously edit multiple genes (multiplex genome editing) in the same cells—has positioned engineered T cells as programmable and persistent therapeutics. Here, we briefly review key milestones, challenges, and innovations in T-cell gene engineering, from allogeneic hematopoietic stem cell transplantation to next-generation TCR-edited immunotherapies.

1.
Hernández-López
A
,
Olaya-Vargas
A
,
Bustamante-Ogando
JC
,
Meneses-Acosta
A
.
Expanding the horizons of CAR-T cell therapy: a review of therapeutic targets across diverse diseases
.
Pharmaceuticals
.
2025
;
18
(
2
):
156
.
2.
Kumar
D
,
Tanwar
R
,
Kamal
R
,
Mukherjee
D
.
Tecelra's approval: a breakthrough in synovial sarcoma therapy
.
Curr Drug Discov Technol
.
2025
;
22
:
e15701638357969
.
3.
Lee
A
.
Obecabtagene autoleucel: first approval
.
Mol Diagn Ther
.
2025
;
29
(
3
):
419
-
423
.
4.
Weiden
PL
,
Flournoy
N
,
Thomas
ED
, et al.
Antileukemic effect of graft- versus-host disease in human recipients of allogeneic-marrow grafts
.
N Engl J Med
.
1979
;
300
(
19
):
1068
-
1073
.
5.
Chabannon
C
,
Kuball
J
,
Bondanza
A
, et al.
Hematopoietic stem cell transplantation in its 60s: a platform for cellular therapies
.
Sci Transl Med
.
2018
;
10
(
436
):
eaap9630
.
6.
Bonini
C
,
Ferrari
G
,
Verzeletti
S
, et al.
HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia
.
Science
.
1997
;
276
(
5319
):
1719
-
1724
.
7.
Belk
JA
,
Yao
W
,
Ly
N
, et al.
Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence
.
Cancer Cell
.
2022
;
40
(
7
):
768
-
786.e7
.
8.
Cianciotti
BC
,
Magnani
ZI
,
Ugolini
A
, et al.
TIM-3, LAG-3, or 2B4 gene disruptions increase the anti-tumor response of engineered T cells
.
Front Immunol
.
2024
;
15
:
1315283
.
9.
Gross
G
,
Waks
T
,
Eshhar
Z
.
Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity
.
Proc Natl Acad Sci USA
.
1989
;
86
(
24
):
10024
-
10028
.
10.
Provasi
E
,
Genovese
P
,
Lombardo
A
, et al.
Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer
.
Nat Med
.
2012
;
18
(
5
):
807
-
815
.
11.
Ciceri
F
,
Bonini
C
,
Stanghellini
MTL
, et al.
Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study
.
Lancet Oncol
.
2009
;
10
(
5
):
489
-
500
.
12.
Oliveira
G
,
Ruggiero
E
,
Stanghellini
MTL
, et al.
Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory
.
Sci Transl Med
.
2015
;
7
(
317
):
317ra198
.
13.
Vago
L
,
Oliveira
G
,
Bondanza
A
, et al.
T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation
.
Blood
.
2012
;
120
(
9
):
1820
-
1830
.
14.
Bonini
C
,
Grez
M
,
Traversari
C
, et al.
Safety of retroviral gene marking with a truncated NGF receptor
.
Nat Med
.
2003
;
9
(
4
):
367
-
369
.
15.
Levine
BL
,
Pasquini
MC
,
Connolly
JE
, et al.
Unanswered questions following reports of secondary malignancies after CAR-T cell therapy
.
Nat Med
.
2024
;
30
(
2
):
338
-
341
.
16.
Jadlowsky
JK
,
Hexner
EO
,
Marshall
A
, et al.
Long-term safety of lentiviral or gammaretroviral gene-modified T cell therapies
.
Nat Med
.
2025
;
31
(
4
):
1134
-
1144
.
17.
Berger
C
,
Jensen
MC
,
Lansdorp
PM
,
Gough
M
,
Elliott
C
,
Riddell
SR
.
Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates
.
J Clin Invest
.
2008
;
118
(
1
):
294
-
305
.
18.
Gattinoni
L
,
Lugli
E
,
Ji
Y
, et al.
A human memory T cell subset with stem cell-like properties
.
Nat Med
.
2011
;
17
(
10
):
1290
-
1297
.
19.
Cieri
N
,
Camisa
B
,
Cocchiarella
F
, et al.
IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors
.
Blood
.
2013
;
121
(
4
):
573
-
584
.
20.
Gattinoni
L
,
Speiser
DE
,
Lichterfeld
M
,
Bonini
C
.
T memory stem cells in health and disease
.
Nat Med
.
2017
;
23
(
1
):
18
-
27
.
21.
Bonini
C
,
Chapuis
AG
,
Hudecek
M
,
Guedan
S
,
Magnani
C
,
Qasim
W
.
Genome editing in engineered T cells for cancer immunotherapy
.
Hum Gene Ther
.
2023
;
34
(
17-18
):
853
-
869
.
22.
Di Stasi
A
,
Tey
SK
,
Dotti
G
, et al.
Inducible apoptosis as a safety switch for adoptive cell therapy
.
N Engl J Med
.
2011
;
365
(
18
):
1673
-
1683
.
23.
Norelli
M
,
Camisa
B
,
Barbiera
G
, et al.
Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells
.
Nat Med
.
2018
;
24
(
6
):
739
-
748
.
24.
Arcangeli
S
,
Bove
C
,
Mezzanotte
C
, et al.
CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome
.
J Clin Invest
.
2022
;
132
(
12
):
e150807
.
25.
Giavridis
T
,
van der Stegen
SJC
,
Eyquem
J
,
Hamieh
M
,
Piersigilli
A
,
Sadelain
M
.
CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade
.
Nat Med
.
2018
;
24
(
6
):
731
-
738
.
26.
Rejeski
K
,
Subklewe
M
,
Aljurf
M
, et al.
Immune effector cell–associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations
.
Blood
.
2023
;
142
(
10
):
865
-
877
.
27.
Neelapu
SS
,
Tummala
S
,
Kebriaei
P
, et al.
Chimeric antigen receptor T-cell therapy—assessment and management of toxicities
.
Nat Rev Clin Oncol
.
2018
;
15
(
1
):
47
-
62
.
28.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al.
ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transplant
.
2019
;
25
(
4
):
625
-
638
.
29.
Del Bufalo
F
,
De Angelis
B
,
Caruana
I
, et al.
GD2-CART01 for relapsed or refractory high-risk neuroblastoma
.
N Engl J Med
.
2023
;
388
(
14
):
1284
-
1295
.
30.
Kuwana
Y
,
Asakura
Y
,
Utsunomiya
N
, et al.
Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions
.
Biochem Biophys Res Commun
.
1987
;
149
:
960
-
968
.
31.
Beecham
EJ
,
Ma
Q
,
Ripley
R
,
Junghans
RP
.
Coupling CD28 co-stimulation to immunoglobulin T-Cell receptor molecules: the dynamics of T-cell proliferation and death
.
J Immunother
.
2000
;
23
(
6
):
631
-
642
.
32.
Hombach
A
,
Sent
D
,
Schneider
C
, et al.
T-cell activation by recombinant receptors: CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor- mediated target cell lysis
.
Cancer Res
.
2001
;
61
(
5
):
1976
-
1982
.
33.
Haynes
NM
,
Trapani
JA
,
Teng
MWL
, et al.
Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors
.
Blood
.
2002
;
100
(
9
):
3155
-
3163
.
34.
Maher
J
,
Brentjens
RJ
,
Gunset
G
,
Rivière
I
,
Sadelain
M
.
Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor
.
Nat Biotechnol
.
2002
;
20
(
1
):
70
-
75
.
35.
Kowolik
CM
,
Topp
MS
,
Gonzalez
S
, et al.
CD28 Costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells
.
Cancer Res
.
2006
;
66
(
22
):
10995
-
11004
.
36.
Kochenderfer
JN
,
Wilson
WH
,
Janik
JE
, et al.
Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19
.
Blood
.
2010
;
116
(
20
):
4099
-
4102
.
37.
Press
OW
,
Wang
J
,
Lindgren
CG
, et al.
Preliminary results of a pilot phase I clinical trial of adoptive immunotherapy for B cell lymphoma using CD8+ T cells genetically modified to express a chimeric T cell receptor recognizing CD20
.
Mol Ther
.
2006
;
13
:
S22
.
38.
Porter
DL
,
Levine
BL
,
Kalos
M
,
Bagg
A
,
June
CH
.
Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia
.
N Engl J Med
.
2011
;
365
(
8
):
725
-
733
.
39.
Brentjens
RJ
,
Davila
ML
,
Riviere
I
, et al.
CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia
.
Sci Transl Med
.
2013
;
5
(
177
):
177ra38
.
40.
Maude
SL
,
Frey
N
,
Shaw
PA
, et al.
Chimeric antigen receptor T cells for sustained remissions in leukemia
.
N Engl J Med
.
2014
;
371
(
16
):
1507
-
1517
.
41.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al.
CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
.
J Clin Invest
.
2016
;
126
(
6
):
2123
-
2138
.
42.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
43.
Wang
M
,
Munoz
J
,
Goy
A
, et al.
KTE-X19 CAR T-Cell therapy in relapsed or refractory mantle-cell lymphoma
.
N Engl J Med
.
2020
;
382
(
14
):
1331
-
1342
.
44.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
-
324
.
45.
Munshi
NC
,
Anderson
LD
,
Shah
N
, et al.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
46.
Patel
KK
,
Tariveranmoshabad
M
,
Kadu
S
,
Shobaki
N
,
June
C
.
From concept to cure: the evolution of CAR-T cell therapy
.
Mol Ther
.
2025
;
33
(
5
):
2123
-
2140
.
47.
Casucci
M
,
Nicolis di Robilant
B
,
Falcone
L
, et al.
CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma
.
Blood
.
2013
;
122
(
20
):
3461
-
3472
.
48.
Hudecek
M
,
Lupo-Stanghellini
MT
,
Kosasih
PL
, et al.
Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells
.
Clin Cancer Res
.
2013
;
19
(
12
):
3153
-
3164
.
49.
Khalifeh
M
,
Hopewell
E
,
Salman
H
.
CAR T cell therapy for treatment of acute myeloid leukemia, advances and outcomes
.
Mol Ther
.
2025
;
33
(
6
):
2441
-
2453
.
50.
Jaeger-Ruckstuhl
CA
,
Specht
JM
,
Voutsinas
JM
, et al.
Phase I study of ROR1-specific CAR-T cells in advanced hematopoietic and epithelial malignancies
.
Clin Cancer Res
.
2025
;
31
(
3
):
503
-
514
.
51.
Greco
B
,
El Khoury
R
,
Balestrieri
C
, et al.
Systemic delivery of cadherin 17–specific CAR T cells allows effective and safe targeting of colorectal cancer liver metastases
.
Sci Transl Med
.
2025
;
17
(
800
):
eadr1928
.
52.
Robbins
PF
,
Morgan
RA
,
Feldman
SA
, et al.
Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1
.
J Clin Oncol
.
2011
;
29
(
7
):
917
-
924
.
53.
Chapuis
AG
,
Egan
DN
,
Bar
M
, et al.
T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant
.
Nat Med
.
2019
;
25
(
7
):
1064
-
1072
.
54.
D'Angelo
SP
,
Araujo
DM
,
Abdul Razak
AR
, et al.
Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): an international, open-label, phase 2 trial
.
Lancet
.
2024
;
403
(
10435
):
1460
-
1471
.
55.
Cheever
MA
,
Allison
JP
,
Ferris
AS
, et al.
The prioritization of cancer antigens: a National Cancer Institute Pilot Project for the acceleration of translational research
.
Clin Cancer Res
.
2009
;
15
(
17
):
5323
-
5337
.
56.
Puig-Saus
C
,
Sennino
B
,
Peng
S
, et al.
Neoantigen-targeted CD8+ T cell responses with PD-1 blockade therapy
.
Nature
.
2023
;
615
(
7953
):
697
-
704
.
57.
Ruggiero
E
,
Carnevale
E
,
Prodeus
A
, et al.
CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function
.
Sci Transl Med
.
2022
;
14
(
631
):
eabg8027
.
58.
Potenza
A
,
Balestrieri
C
,
Spiga
M
, et al.
Revealing and harnessing CD39 for the treatment of colorectal cancer and liver metastases by engineered T cells
.
Gut
.
2023
;
72
(
10
):
1887
-
1903
.
59.
Ruggiero
E
,
Nicolay
JP
,
Fronza
R
, et al.
High-resolution analysis of the human T-cell receptor repertoire
.
Nat Commun
.
2015
;
6
:
1
-
7
.
60.
Gros
A
,
Robbins
PF
,
Yao
X
, et al.
PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors
.
J Clin Invest
.
2014
;
124
(
5
):
2246
-
2259
.
61.
Manfredi
F
,
Stasi
L
,
Buonanno
S
, et al.
Harnessing T cell exhaustion and trogocytosis to isolate patient-derived tumor-specific TCR
.
Sci Adv
.
2023
;
9
(
48
):
eadg8014
.
62.
Moravec
Z
,
Zhao
Y
,
Voogd
R
, et al.
Discovery of tumor-reactive T cell receptors by massively parallel library synthesis and screening
.
Nat Biotechnol
.
2025
;
43
(
2
):
214
-
222
.
63.
Mastaglio
S
,
Genovese
P
,
Magnani
Z
, et al.
NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease
.
Blood
.
2017
;
130
(
5
):
606
-
618
.
64.
Qasim
W
,
Zhan
H
,
Samarasinghe
S
, et al.
Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells
.
Sci Transl Med
.
2017
;
9
(
374
):eaaj2013.
65.
Schober
K
,
Müller
TR
,
Gökmen
F
, et al.
Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function
.
Nat Biomed Eng
.
2019
;
3
(
12
):
974
-
984
.
66.
Webber
BR
,
Lonetree
C lin
,
Kluesner
MG
, et al.
Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors
.
Nat Commun
.
2019
;
10
(
1
):
5222
.
67.
Georgiadis
C
,
Rasaiyaah
J
,
Gkazi
SA
, et al.
Base-edited CAR T cells for combinational therapy against T cell malignancies
.
Leukemia
.
2021
;
35
(
12
):
3466
-
3481
.
68.
Fearon
DT
,
Manders
P
,
Wagner
SD
.
Arrested differentiation, the self- renewing memory lymphocyte, and vaccination
.
Science
.
2001
;
293
(
5528
):
248
-
250
.
69.
Zhang
Y
,
Joe
G
,
Hexner
E
,
Zhu
J
,
Emerson
SG
.
Host-reactive CD8+ memory stem cells in graft-versus-host disease
.
Nat Med
.
2005
;
11
(
12
):
1299
-
1305
.
70.
Cieri
N
,
Oliveira
G
,
Greco
R
, et al.
Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation
.
Blood
.
2015
;
125
(
18
):
2865
-
2874
.
71.
Roberto
A
,
Castagna
L
,
Zanon
V
, et al.
Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation
.
Blood
.
2015
;
125
(
18
):
2855
-
2864
.
72.
Biasco
L
,
Scala
S
,
Basso Ricci
L
, et al.
In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells
.
Sci Transl Med
.
2015
;
7
(
273
):
273ra13
.
73.
Schelker
RC
,
Fioravanti
J
,
Mastrogiovanni
F
, et al.
LIM-domain-only 4 (LMO4) enhances CD8+ T-cell stemness and tumor rejection by boosting IL-21-STAT3 signaling
.
Signal Transduct Target Ther
.
2024
;
9
(
1
):
199
.
74.
Arcangeli
S
,
Falcone
L
,
Camisa
B
, et al.
Next-generation manufacturing protocols enriching TSCM CAR T cells can overcome disease-specific T cell defects in cancer patients
.
Front Immunol
.
2020
;
11
:
1217
.
75.
Datlinger
P
,
Pankevich
EV
,
Arnold
CD
et al.
Systematic discovery of CRISPR-boosted CAR T cell immunotherapies
.
Nature
.
2025
Oct
;
646
(
8086
):
963
-
972
.
76.
Ataide
MA
,
Komander
K
,
Knöpper
K
, et al.
BATF3 programs CD8+ T cell memory
.
Nat Immunol
.
2020
;
21
(
11
):
1397
-
1407
.
77.
Zeiser
R
,
Vago
L
.
Mechanisms of immune escape after allogeneic hematopoietic cell transplantation
.
Blood
.
2019
;
133
(
12
):
1290
-
1297
.
78.
Vago
L
,
Perna
SK
,
Zanussi
M
, et al.
Loss of mismatched HLA in leukemia after stem-cell transplantation
.
N Engl J Med
.
2009
;
361
(
5
):
478
-
488
.
79.
Toffalori
C
,
Zito
L
,
Gambacorta
V
, et al.
Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation
.
Nat Med
.
2019
;
25
(
4
):
603
-
611
.
80.
Noviello
M
,
Manfredi
F
,
Ruggiero
E
, et al.
Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT [published online 25 March 2019]
.
Nat Commun
.
81.
Choi
BD
,
Yu
X
,
Castano
AP
, et al.
CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma
.
J Immunother Cancer
.
2019
;
7
(
1
):
304
.
82.
Rupp
LJ
,
Schumann
K
,
Roybal
KT
, et al.
CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells
.
Sci Rep.
2017
;
7
(
1
):
737
.
83.
Guo
X
,
Jiang
H
,
Shi
B
, et al.
Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma
.
Front Pharmacol
.
2018
;
9
:
1118
.
84.
Ren
J
,
Liu
X
,
Fang
C
,
Jiang
S
,
June
CH
,
Zhao
Y
.
Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition
.
Clin Cancer Res
.
2017
;
23
(
9
):
2255
-
2266
.
85.
Zhang
Y
,
Zhang
X
,
Cheng
C
, et al.
CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells
.
Front Med
.
2017
;
11
(
4
):
554
-
562
.
86.
Hu
W
,
Zi
Z
,
Jin
Y
, et al.
CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions
.
Cancer Immunol Immunother
.
2019
;
68
(
3
):
365
-
377
.
87.
Zhang
W
,
Shi
L
,
Zhao
Z
, et al.
Disruption of CTLA-4 expression on peripheral blood CD8 + T cell enhances anti-tumor efficacy in bladder cancer
.
Cancer Chemother Pharmacol
.
2019
;
83
(
5
):
911
-
920
.
88.
Stadtmauer
EA
,
Fraietta
JA
,
Davis
MM
, et al.
CRISPR-engineered T cells in patients with refractory cancer
.
Science
.
2020
;
367
(
6481
):eaba7365.
89.
Baeuerle
PA
,
Ding
J
,
Patel
E
, et al.
Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response
.
Nat Commun
.
2019
;
10
(
1
):
2087
.
90.
Mansilla-Soto
J
,
Eyquem
J
,
Haubner
S
, et al.
HLA-independent T cell receptors for targeting tumors with low antigen density
.
Nat Med
.
2022
;
28
(
2
):
345
-
352
.
91.
Mog
BJ
,
Marcou
N
,
DiNapoli
SR
, et al.
Preclinical studies show that Co-STARs combine the advantages of chimeric antigen and T cell receptors for the treatment of tumors with low antigen densities
.
Sci Transl Med
.
2024
;
16
(
755
):
eadg7123
.
92.
Simon
S
,
Bugos
G
,
Prins
R
, et al.
Design of sensitive monospecific and bispecific synthetic chimeric T cell receptors for cancer therapy
.
Nat Cancer
.
2025
;
6
(
4
):
647
-
665
.
93.
Ammar
D
,
Schapitz
I
,
Luu
M
, et al.
Accelerating development of engineered T cell therapies in the EU: current regulatory framework for studying multiple product versions and T2EVOLVE recommendations
.
Front Immunol
.
2023
;
14
:
1280826
.
94.
Nyberg
WA
,
Wang
CH
,
Ark
J
, et al.
In vivo engineering of murine T cells using the evolved adeno-associated virus variant Ark313
.
Immunity
.
2025
;
58
(
2
):
499
-
512.e7
.
95.
Georgiadis
C
,
Preece
R
,
Qasim
W
.
Clinical development of allogeneic chimeric antigen receptor αβ-T cells
.
Mol Ther
.
2025
;
33
(
6
):
2426
-
2440
.
96.
Kim
YG
,
Cha
J
,
Chandrasegaran
S
.
Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain
.
Proc Natl Acad Sci
.
1996
;
93
(
3
):
1156
-
1160
.
97.
Bibikova
M
,
Beumer
K
,
Trautman
JK
,
Carroll
D
.
Enhancing gene targeting with designed zinc finger nucleases
.
Science (1979)
.
2003
;
300
(
5620
):
764
.
98.
Bibikova
M
,
Golic
M
,
Golic
KG
,
Carroll
D
.
Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases
.
Genetics
.
2002
;
161
(
3
):
1169
-
1175
.
99.
Boch
J
,
Scholze
H
,
Schornack
S
, et al.
Breaking the code of DNA binding specificity of TAL-type III effectors
.
Science
.
2009
;
326
(
5959
):
1509
-
1512
.
100.
Moscou
MJ
,
Bogdanove
AJ
.
A simple cipher governs DNA recognition by TAL effectors
.
Science
.
2009
;
326
(
5959
):
1501
.
101.
Christian
M
,
Cermak
T
,
Doyle
EL
, et al.
Targeting DNA double-strand breaks with TAL effector nucleases
.
Genetics
.
2010
;
186
(
2
):
757
-
761
.
102.
Jinek
M
,
Chylinski
K
,
Fonfara
I
,
Hauer
M
,
Doudna
JA
,
Charpentier
E
.
A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity
.
Science
.
2012
;
337
(
9096
):
816
-
821
.
103.
Komor
AC
,
Kim
YB
,
Packer
MS
,
Zuris
JA
,
Liu
DR
.
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
.
Nature
.
2016
;
533
(
7603
):
420
-
424
.
104.
Anzalone
A V
.,
Randolph
PB
,
Davis
JR
, et al.
Search-and-replace genome editing without double-strand breaks or donor DNA
.
Nature
.
2019
;
576
(
7785
):
149
-
157
.
105.
Amabile
A
,
Migliara
A
,
Capasso
P
, et al.
Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing
.
Cell
.
2016
;
167
(
1
):
219
-
232
.e14.
106.
Tebas
P
,
Jadlowsky
JK
,
Shaw
PA
, et al.
CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication
.
J Clin Invest
.
2021
;
131
(
7
):
e144486
.
107.
Lu
Y
,
Xue
J
,
Deng
T
, et al.
Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer
.
Nat Med
.
2020
;
26
(
5
):
732
-
740
.
108.
Lin
Y
,
Yin
H
,
Zhou
C
,
Zhou
L
,
Zeng
Y
,
Yao
H
.
Phase I clinical trial of MUC1- targeted CAR-T cells with PD-1-knockout in the treatment of advanced breast cancer
.
J Clin Oncol
.
2024
;
42
(
16
)(suppl):
1089
.
109.
Stadtmauer
EA
,
Cohen
AD
,
Weber
K
, et al.
First-in-human assessment of feasibility and safety of multiplexed genetic engineering of autologous T cells expressing NY-ESO -1 TCR and CRISPR/Cas9 gene edited to eliminate endogenous TCR and PD-1 (NYCE T cells) in advanced multiple myeloma (MM) and sarcoma
.
Blood
.
2019
;
134
(
suppl 1
):
49
.
110.
Zhang
J
,
Hu
Y
,
Yang
J
, et al.
Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL
.
Nature
.
2022
;
609
(
7926
):
369
-
374
.
111.
Wang
Z
,
Li
N
,
Feng
K
, et al.
Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors
.
Cell Mol Immunol
.
2021
;
18
(
9
):
2188
-
2198
.
112.
Wang
Z
,
Chen
M
,
Zhang
Y
, et al.
Phase I study of CRISPR-engineered CAR-T cells with PD-1 inactivation in treating mesothelin-positive solid tumors
.
J Clin Oncol
.
2020
;
38
(
15
)(suppl):
3038
.
113.
Lou
E
,
Choudhry
MS
,
Starr
TK
, et al.
Targeting the intracellular immune checkpoint CISH with CRISPR-Cas9-edited T cells in patients with metastatic colorectal cancer: a first-in-human, single-centre, phase 1 trial
.
Lancet Oncol
.
2025
;
26
(
5
):
559
-
570
.
114.
Zhang
N
,
SI
J
,
LI
G
, et al.
Decreasing HPK1 expression in CD19 CAR-T cells: a novel strategy to overcome challenges of cell therapy for adult (r/r) B-ALL
.
J Clin Oncol
.
2022
;
40
(
16
)(suppl):
7041
.
115.
Pal
SK
,
Tran
B
,
Haanen
JBAG
, et al.
CD70-Targeted allogeneic CAR T-cell therapy for advanced clear cell renal cell carcinoma
.
Cancer Discov
.
2024
;
14
(
7
):
1176
-
1189
.
116.
Ottaviano
G
,
Georgiadis
C
,
Gkazi
SA
, et al.
Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia
.
Sci Transl Med
.
2022
;
4
(
668
):
eabq3010
.
117.
Benjamin
R
,
Graham
C
,
Yallop
D
, et al.
Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies
.
Lancet
.
2020
;
396
(
10266
):
1885
-
1894
.
118.
Benjamin
R
,
Jain
N
,
Maus
MV
, et al.
UCART19, a first-in-class allogeneic anti-CD19 chimeric antigen receptor T-cell therapy for adults with relapsed or refractory B-cell acute lymphoblastic leukaemia (CALM): a phase 1, dose-escalation trial
.
Lancet Haematol
.
2022
;
9
(
11
):
e833
-
e843
.
119.
Hu
Y
,
Zhou
Y
,
Zhang
M
, et al.
CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia
.
Clin Cancer Res
.
2021
;
27
(
10
):
2764
-
2772
.
120.
Nitin
J
,
Hagop
K
,
Scott
RS
, et al.
Preliminary safety and efficacy of PBCAR0191, an allogeneic ‘off-the-shelf’ CD19-directed CAR-T for patients with relapsed/refractory (R/R) CD19+ B-ALL
.
Blood
.
2021
;
138
(
suppl 1
):
7516
.
121.
Nitin
J
,
Gail
JR
,
Marina
K
, et al.
Preliminary results of Balli-01: a phase I study of UCART22 (allogeneic engineered T-cells expressing anti-CD22 chimeric antigen receptor) in adult patients with relapsed or refractory (R/R) CD22+ B-cell acute lymphoblastic leukemia (B-ALL)
.
Blood
.
2020
;
136
(
suppl 1
):
614
.
122.
Chiesa
R
,
Georgiadis
C
,
Syed
F
, et al.
Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia
.
N Engl J Med
.
2023
;
389
(
10
):
899
-
910
.
123.
John
DP
,
Cooper
DW
,
Suh
HC
, et al.
Trem-Cel, a CRISPR/Cas9 gene- edited allograft lacking CD33, shows rapid primary engraftment with CD33-negative hematopoiesis in patients with high-risk acute myeloid leukemia (AML) and avoids hematopoietic toxicity during gemtuzumab ozogamicin (GO) maintenance post-hematopoietic cell transplant (HCT)
.
Blood
.
2023
;
142
(
suppl 1
):
483
. doi:.
124.
Jing
Z
,
Zhang
N
,
Ding
L
, et al.
Safety and activity of programmed cell death-1 gene knockout engineered t cells in patients with previously treated advanced esophageal squamous cell carcinoma: an open-label, single-arm phase I study
.
J Clin Oncol
.
2018
;
36
(
15
)(suppl):
3054
.
125.
Choe
JH
,
Watchmaker
PB
,
Simic
MS
, et al.
SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma
.
Sci Transl Med
.
2021
;
13
(
591
):
eabe7378
.
126.
Piraner
DI
,
Abedi
MH
,
Duran Gonzalez
MJ
, et al.
Engineered receptors for soluble cellular communication and disease sensing
.
Nature
.
2025
;
638
(
8051
):
805
-
813
.
127.
Di Stasi
A
,
De Angelis
B
,
Rooney
CM
, et al.
T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model
.
Blood
.
2009
;
113
(
25
):
6392
-
6402
.
128.
Caruana
I
,
Savoldo
B
,
Hoyos
V
, et al.
Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes
.
Nat Med
.
2015
;
21
(
5
):
524
-
529
.
129.
Jan
M
,
Scarfò
I
,
Larson
RC
, et al.
Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide
.
Sci Transl Med
.
2021
;
13
(
575
):eabb6295.
130.
Mann
R
,
Mulligan
RC
,
Baltimore
D
.
Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus
.
Cell
.
1983
;
33
(
1
):
153
-
159
.
131.
Miller
AD
,
Buttimore
C
.
Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production
.
Mol Cell Biol
.
1986
;
6
(
8
):
2895
-
2902
.
132.
Allison Jim
P
,
McIntyre
BW
,
Bloch
D
.
Tumor-specific antigen of murine T- lymphoma defined with monoclonal antibody
.
J Immunol
.
1982
;
129
(
5
):
2293
.
133.
Rosenberg
SA
,
Packard
BS
,
Aebersold
PM
, et al.
Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma
.
N Engl J Med
.
1988
;
319
(
25
):
1676
-
1680
.
134.
Rosenberg
SA
,
Aebersold
P
,
Cornetta
K
, et al.
Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor- infiltrating lymphocytes modified by retroviral gene transduction
.
N Engl J Med
.
1990
;
323
(
9
):
570
-
578
.
135.
Riddell
SR
,
Watanabe
KS
,
Goodrich
JM
,
Li
CR
,
Agha
ME
,
Greenberg
PD
.
Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones
.
Science
.
1992
;
257
(
5067
):
238
-
241
.
136.
Kolb
H
,
Mittermuller
J
,
Clemm
C
, et al.
Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients
.
Blood
.
1990
;
76
(
12
):
2462
-
2465
.
137.
Szer
J
,
Grigg
AP
,
Phillips
GL
,
Sheridan
WP
.
Donor leucocyte infusions after chemotherapy for patients relapsing with acute leukaemia following allogeneic BMT
.
Bone Marrow Transplant
.
1993
;
11
(
2
):
109
-
111
.
138.
Kolb
H
,
Schattenberg
A
,
Goldman
J
, et al.
Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia [see comments]
.
Blood
.
1995
;
86
(
5
):
2041
-
2050
.
139.
van Rhee
F
,
Lin
F
,
Cullis
J
, et al.
Relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: the case for giving donor leukocyte transfusions before the onset of hematologic relapse
.
Blood
.
1994
;
83
(
11
):
3377
-
3383
.
140.
Mackinnon
S
,
Papadopoulos
E
,
Carabasi
M
, et al.
Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease
.
Blood
.
1995
;
86
(
4
):
1261
-
1268
.
141.
Slavin
S
,
Naparstek
E
,
Nagler
A
, et al.
Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation
.
Blood
.
1996
;
87
(
6
):
2195
-
2204
.
142.
Drobyski
W
,
Keever
C
,
Roth
M
, et al.
Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: efficacy and toxicity of a defined T-cell dose
.
Blood
.
1993
;
82
(
8
):
2310
-
2318
.
143.
Papadopoulos
EB
,
Ladanyi
M
,
Emanuel
D
, et al.
Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation
.
N Engl J Med
.
1994
;
330
(
17
):
1185
-
1191
.
144.
Rooney
CM
,
Ng
CYC
,
Loftin
S
, et al.
Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation
.
Lancet
.
1995
;
345
(
8941
):
9
-
13
.
145.
Bordignon
C
,
Notarangelo
LD
,
Nobili
N
, et al.
Gene therapy in peripheral blood lymphocytes and bone marrow for ADA immunodeficient patients
.
Science
.
1995
;
270
(
5235
):
470
-
475
.
146.
Blaese
RM
,
Culver
KW
,
Miller
AD
, et al.
T lymphocyte-directed gene therapy for ADA SCID: initial trial results after 4 years
.
Science
.
1995
;
270
(
5235
):
475
-
480
.
147.
Naldini
L
,
Blömer
U
,
Gallay
P
, et al.
In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector
.
Science
.
1996
;
272
(
5259
):
263
-
267
.
148.
Falkenburg
JHF
,
Wafelman
AR
,
Joosten
P
, et al.
Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes
.
Blood
.
1999
;
94
(
4
):
1201
-
1208
.
149.
Warren
EH
,
Fujii
N
,
Akatsuka
Y
, et al.
Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens
.
Blood
.
2010
;
115
(
19
):
3869
-
3878
.
150.
Bornhäuser
M
,
Thiede
C
,
Platzbecker
U
, et al.
Prophylactic transfer of BCR-ABL–, PR1-, and WT1-reactive donor T cells after T cell–depleted allogeneic hematopoietic cell transplantation in patients with chronic myeloid leukemia
.
Blood
.
2011
;
117
(
26
):
7174
-
7184
.
151.
Chapuis
AG
,
Ragnarsson
GB
,
Nguyen
HN
, et al.
Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post- transplant patients
.
Sci Transl Med
.
2013
;
5
(
174
):
174ra27
.
152.
Comoli
P
,
Basso
S
,
Riva
G
, et al.
BCR-ABL–specific T-cell therapy in Ph+ ALL patients on tyrosine-kinase inhibitors
.
Blood
.
2017
;
129
(
5
):
582
-
586
.
153.
Urnov
FD
,
Miller
JC
,
Lee
YL
, et al.
Highly efficient endogenous human gene correction using designed zinc-finger nucleases
.
Nature
.
2005
;
435
(
7042
):
646
-
651
.
154.
Morgan
RA
,
Dudley
ME
,
Wunderlich
JR
, et al.
Cancer regression in patients after transfer of genetically engineered lymphocytes
.
Science
.
2006
;
314
(
5796
):
126
-
129
.
155.
Liu
D
,
Cao
D
,
Han
R
.
Recent advances in therapeutic gene-editing technologies
.
Mol Ther
.
2025
;
33
(
6
):
2619
-
2644
.
156.
Xu
J
,
Liu
L
,
Parone
P
, et al.
In-vivo B-cell maturation antigen CAR T-cell therapy for relapsed or refractory multilple myeloma
.
Lancet
.
2025
;
406
(
10500
):
228
-
231
.
You do not currently have access to this content.