Besides transfusion therapy, ineffective erythropoiesis contributes to systemic iron overload in myelodysplastic syndromes with ring sideroblasts (MDS-RS) via erythroferrone-induced suppression of hepcidin synthesis in the liver, leading to increased intestinal iron absorption. The underlying pathophysiology of MDS-RS, characterized by disturbed heme synthesis and mitochondrial iron accumulation, is less well understood. Several lines of evidence indicate that the mitochondrial transporter ABCB7 is critically involved. ABCB7 is misspliced and underexpressed in MDS-RS, due to somatic mutations in the splicing factor SF3B1. The pathogenetic significance of ABCB7 seems related to its role in stabilizing ferrochelatase, the enzyme incorporating iron into protoporphyrin IX to make heme. Although iron-related oxidative stress is toxic, many patients with MDS do not live long enough to develop clinical complications of iron overload. Furthermore, it is difficult to determine the extent to which iron overload contributes to morbidity and mortality in older patients with MDS, because iron-related complications overlap with age-related medical problems. Nevertheless, high-quality registry studies showed that transfusion dependency is associated with the presence of toxic iron species and inferior survival and confirmed a significant survival benefit of iron chelation therapy. The most widely used iron chelator in patients with MDS is deferasirox, owing to its effectiveness and convenient oral administration. Luspatercept, which can reduce SMAD2/SMAD3-dependent signaling implicated in suppression of erythropoiesis, may obviate the need for red blood cell transfusion in MDS-RS for more than a year, thereby diminishing further iron loading. However, luspatercept cannot be expected to substantially reduce the existing iron overload.

1.
Cazzola
M
,
Barosi
G
,
Berzuini
C
, et al.
Quantitative evaluation of erythropoietic activity in dysmyelopoietic syndromes
.
Br J Haematol
.
1982
;
50
(
1
):
55
-
62
.
2.
Ambaglio
I
,
Malcovati
L
,
Papaemmanuil
E
, et al.
Inappropriately low hepcidin levels in patients with myelodysplastic syndrome carrying a somatic mutation of SF3B1
.
Haematologica
.
2013
;
98
(
3
):
420
-
423
.
3.
Kautz
L
,
Jung
G
,
Valore
EV
,
Rivella
S
,
Nemeth
E
,
Ganz
T.
Identification of erythroferrone as an erythroid regulator of iron metabolism
.
Nat Genet
.
2014
;
46
(
7
):
678
-
684
.
4.
Santini
V
,
Girelli
D
,
Sanna
A
, et al.
Hepcidin levels and their determinants in different types of myelodysplastic syndromes
.
PLoS One
.
2011
;
6
(
8
):
e23109
.
5.
Steensma
DP
,
Hecksel
KA
,
Porcher
JC
,
Lasho
TL
.
Candidate gene mutation analysis in idiopathic acquired sideroblastic anemia (refractory anemia with ringed sideroblasts)
.
Leuk Res
.
2007
;
31
(
5
):
623
-
628
.
6.
Papaemmanuil
E
,
Cazzola
M
,
Boultwood
J
, et al
;
Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts
.
Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts
.
N Engl J Med
.
2011
;
365
(
15
):
1384
-
1395
.
7.
Dolatshad
H
,
Pellagatti
A
,
Liberante
FG
, et al.
Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes
.
Leukemia
.
2016
;
30
(
12
):
2322
-
2331
.
8.
Boultwood
J
,
Pellagatti
A
,
Nikpour
M
, et al.
The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts
.
PLoS One
.
2008
;
3
(
4
):
e1970
.
9.
Allikmets
R
,
Raskind
WH
,
Hutchinson
A
,
Schueck
ND
,
Dean
M
,
Koeller
DM
.
Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A)
.
Hum Mol Genet
.
1999
;
8
(
5
):
743
-
749
.
10.
Clough
CA
,
Pangallo
J
,
Sarchi
M
, et al.
Coordinated missplicing of TMEM14C and ABCB7 causes ring sideroblast formation in SF3B1-mutant myelodysplastic syndrome
.
Blood
.
2022
;
139
(
13
):
2038
-
2049
.
11.
Taketani
S
,
Kakimoto
K
,
Ueta
H
,
Masaki
R
,
Furukawa
T.
Involvement of ABC7 in the biosynthesis of heme in erythroid cells: interaction of ABC7 with ferrochelatase
.
Blood
.
2003
;
101
(
8
):
3274
-
3280
.
12.
Medlock
AE
,
Shiferaw
MT
,
Marcero
JR
, et al.
Identification of the mitochondrial heme metabolism complex
.
PLoS One
.
2015
;
10
(
8
):
e0135896
.
13.
Crooks
DR
,
Ghosh
MC
,
Haller
RG
,
Tong
W-H
,
Rouault
T-A
.
Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery
.
Blood
.
2010
;
115
(
4
):
860
-
869
.
14.
Maio
N
,
Kim
KS
,
Holmes-Hampton
G
,
Singh
A
,
Rouault
TA
.
Dimeric ferrochelatase bridges ABCB7 and ABCB10 homodimers in an architecturally defined molecular complex required for heme biosynthesis
.
Haematologica
.
2019
;
104
(
9
):
1756
-
1767
.
15.
Schmitz-Abe
K
,
Ciesielski
SJ
,
Schmidt
PJ
, et al.
Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9
.
Blood
.
2015
;
126
(
25
):
2734
-
2738
.
16.
Crispin
A
,
Guo
C
,
Chen
C
, et al.
Mutations in the iron-sulfur cluster biogenesis protein HSCB cause congenital sideroblastic anemia
.
J Clin Invest
.
2020
;
130
(
10
):
5245
-
5256
.
17.
Camaschella
C
,
Nai
A
,
Silvestri
L.
Iron metabolism and iron disorders revisited in the hepcidin era
.
Haematologica
.
2020
;
105
(
2
):
260
-
272
.
18.
Ducamp
S
,
Fleming
MD
.
The molecular genetics of sideroblastic anemia
.
Blood
.
2019
;
133
(
1
):
59
-
69
.
19.
Daher
R
,
Mansouri
A
,
Martelli
A
, et al.
GLRX5 mutations impair heme biosynthetic enzymes ALA synthase 2 and ferrochelatase in human congenital sideroblastic anemia
.
Mol Genet Metab
.
2019
;
128
(
3
):
342
-
351
.
20.
Pearson
SA
,
Cowan
JA
.
Evolution of the human mitochondrial ABCB7 [2Fe-2S](GS)4 cluster exporter and the molecular mechanism of an E433K disease-causing mutation
.
Arch Biochem Biophys
.
2021
;
697
:
108661
.
21.
Schafer
AI
,
Cheron
RG
,
Dluhy
R
, et al.
Clinical consequences of acquired transfusional iron overload in adults
.
N Engl J Med
.
1981
;
304
(
6
):
319
-
324
.
22.
Malcovati
L
,
Della Porta
MG
,
Cazzola
M.
Predicting survival and leukemic evolution in patients with myelodysplastic syndrome
.
Haematologica
.
2006
;
91
(
12
):
1588
-
1590
.
23.
de Swart
L
,
Reiniers
C
,
Bagguley
T
, et al
;
EUMDS Steering Committee
.
Labile plasma iron levels predict survival in patients with lower-risk myelodysplastic syndromes
.
Haematologica
.
2018
;
103
(
1
):
69
-
79
.
24.
Hoeks
M
,
Bagguley
T
,
van Marrewijk
C
, et al
;
EUMDS Registry Participants
.
Toxic iron species in lower-risk myelodysplastic syndrome patients: course of disease and effects on outcome
.
Leukemia
.
2021
;
35
(
6
):
1745
-
1750
.
25.
Leitch
HA
,
Parmar
A
,
Wells
RA
, et al.
Overall survival in lower IPSS risk MDS by receipt of iron chelation therapy, adjusting for patient-related factors and measuring from time of first red blood cell transfusion dependence: an MDS-CAN analysis
.
Br J Haematol
.
2017
;
179
(
1
):
83
-
97
.
26.
Hoeks
M
,
Yu
G
,
Langemeijer
S
, et al
;
EUMDS Registry Participants
.
Impact of treatment with iron chelation therapy in patients with lower-risk myelodysplastic syndromes participating in the European MDS registry
.
Haematologica
.
2020
;
105
(
3
):
640
-
651
.
27.
Zeidan
AM
,
Hendrick
F
,
Friedmann
E
, et al.
Deferasirox therapy is associated with reduced mortality risk in a medicare population with myelodysplastic syndromes
.
J Comp Eff Res
.
2015
;
4
(
4
):
327
-
340
.
28.
Zeidan
AM
,
Giri
S
,
DeVeaux
M
,
Ballas
SK
,
Duong
VH
.
Systematic review and meta-analysis of the effect of iron chelation therapy on overall survival and disease progression in patients with lower-risk myelodysplastic syndromes
.
Ann Hematol
.
2019
;
98
(
2
):
339
-
350
.
29.
Angelucci
E
,
Li
J
,
Greenberg
P
, et al
;
TELESTO Study Investigators
.
Iron chelation in transfusion-dependent patients with low- to intermediate-1-risk myelodysplastic syndromes: a randomized trial
.
Ann Intern Med
.
2020
;
172
(
8
):
513
-
522
.
30.
Buckstein
R
,
Leitch
HA
.
How I treat iron overload in adult myelodysplastic syndrome
.
Blood
.
2024
:blood.2023022501.
31.
Finch
CA
,
Huebers
H.
Perspectives in iron metabolism
.
N Engl J Med
.
1982
;
306
(
25
):
1520
-
1528
.
32.
Teichman
J
,
Geddes
M
,
Zhu
N
, et al.
High transferrin saturation predicts inferior clinical outcomes in patients with myelodysplastic syndromes
.
Haematologica
.
2023
;
108
(
2
):
532
-
542
.
33.
Wood
JC
,
Otto-Duessel
M
,
Aguilar
M
, et al.
Cardiac iron determines cardiac T2*, T2, and T1 in the gerbil model of iron cardiomyopathy
.
Circulation
.
2005
;
112
(
4
):
535
-
543
.
34.
Pascal
L
,
Beyne-Rauzy
O
,
Brechignac
S
, et al.
Cardiac iron overload assessed by T2* magnetic resonance imaging and cardiac function in regularly transfused myelodysplastic syndrome patients
.
Br J Haematol
.
2013
;
162
(
3
):
413
-
415
.
35.
Glickstein
H
,
El
RB
,
Link
G
, et al.
Action of chelators in iron-loaded cardiac cells: accessibility to intracellular labile iron and functional consequences
.
Blood
.
2006
;
108
(
9
):
3195
-
3203
.
36.
Zeidan
AM
,
Fradette
C
,
Rozova
A
,
Toiber Temin
N
,
Tricta
F.
Safety of deferiprone in patients with myelodysplastic syndromes: results from the deferiprone US safety registry and a compassionate use program
.
Blood
.
2022
;
140
(
suppl 1
):
1115
-
1117
.
37.
Gattermann
N
,
Finelli
C
,
Porta
MD
, et al
;
EPIC study investigators
.
Deferasirox in iron-overloaded patients with transfusion-dependent myelodysplastic syndromes: results from the large 1-year EPIC study
.
Leuk Res
.
2010
;
34
(
9
):
1143
-
1150
.
38.
Leitch
HA
,
Gattermann
N.
Hematologic improvement with iron chelation therapy in myelodysplastic syndromes: clinical data, potential mechanisms, and outstanding questions
.
Crit Rev Oncol Hematol
.
2019
;
141
:
54
-
72
.
39.
Van Dijck
R
,
Goncalves Silva
AM
,
Rijneveld
AW
.
Luspatercept as potential treatment for congenital sideroblastic anemia
.
N Engl J Med
.
2023
;
388
(
15
):
1435
-
1436
.
40.
Fenaux
P
,
Platzbecker
U
,
Mufti
GJ
, et al.
Luspatercept in patients with lower- risk myelodysplastic syndromes
.
N Engl J Med
.
2020
;
382
(
2
):
140
-
151
.
41.
Platzbecker
U
,
Della Porta
MG
,
Santini
V
, et al.
Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent- naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): interim analysis of a phase 3, open-label, randomised controlled trial
.
Lancet
.
2023
;
402
(
10399
):
373
-
385
.
42.
Garbowski
MW
,
Ugidos
M
,
Risueño
A
, et al.
Luspatercept stimulates erythropoiesis, increases iron utilization, and redistributes body iron in transfusion-dependent thalassemia
.
Am J Hematol
.
2024
;
99
(
2
):
182
-
192
.
You do not currently have access to this content.