Refractory autoimmune mutilineage cytopenias can present in childhood associated with chronic nonmalignant lymphoproliferation (splenomegaly, hepatomegaly, and/or lymphadenopathy). Cytopenias due to peripheral destruction and sequestration have been well recognized since the 1950s and are often lumped together as eponymous syndromes, such as Evans syndrome and Canale-Smith syndrome. Though their clinical and genetic diagnostic workup may appear daunting, it can provide the basis for early intervention, genetic counseling, and empirical and targeted therapies. Autoimmune lymphoproliferative syndrome (ALPS), activated phosphatidylinositol 3-kinase delta syndrome (APDS), and many other related genetic disorders are otherwise collectively known as inborn errors of immunity (IEI). They present in early childhood as refractory autoimmune cytopenias due to immune dysregulation leading to lymphadenopathy, splenomegaly, and increased susceptibility to lymphoma. More recently, controlled clinical trials have shown that some of these immune system disorders with hematological manifestations might be more readily amenable to specific targeted treatments, thus preventing end-organ damage and associated comorbidities. Over the last 20 years, both rapamycin and mycophenolate mofetil have been successfully used as steroid-sparing long-term measures in ALPS. Current therapeutic options for APDS/PASLI (phosphoinositide 3-kinase [PI3K]-associated senescent T lymphocytes, lymphadenopathy, and immunodeficiency) include the orally bioavailable PI3Kδ inhibitor, leniolisib, which was licensed by the US Food and Drug Administration (FDA) in 2023 for use in individuals older than 12 years as a targeted treatment. Paradigms learned from patients with rare genetic disorders like ALPS and APDS may help in exploring and streamlining molecular therapy strategies in the wider group of IEIs presenting with refractory cytopenias and lymphoproliferation.

1.
Evans
ER.
Diagnosis of the hemolytic anemias
.
Calif Med
.
1951
;
75
(
4
):
271
-
275
.
2.
Evans
RS
,
Takahashi
K
,
Duane
RT
,
Payne
R
,
Liu
C.
Primary thrombocytopenic purpura and acquired hemolytic anemia; evidence for a common etiology
.
AMA Arch Intern Med
.
1951
;
87
(
1
):
48
-
65
.
3.
Canale
VC
,
Smith
CH.
Chronic lymphadenopathy simulating malignant lymphoma
.
J Pediatr
.
1967
;
70
(
6
):
891
-
899
.
4.
Feuille
EJ
,
Anooshiravani
N
,
Sullivan
KE
,
Fuleihan
RL
,
Cunningham-Rundles
C.
Autoimmune cytopenias and associated conditions in CVID: a report from the USIDNET registry
.
J Clin Immunol
.
2018
;
38
(
1
):
28
-
34
.
5.
Yakaboski
E
,
Fuleihan
RL
,
Sullivan
KE
,
Cunningham-Rundles
C
,
Feuille
E.
Lymphoproliferative disease in CVID: a report of types and frequencies from a US patient registry
.
J Clin Immunol
.
2020
;
40
(
3
):
524
-
530
.
6.
Rao
VK
,
Oliveira
JB.
How I treat autoimmune lymphoproliferative syndrome
.
Blood
.
2011
;
118
(
22
):
5741
-
5751
.
7.
Rao
VK
,
Webster
S
,
Dalm
VASH
, et al.
Effective “activated PI3Kδ syndrome”-targeted therapy with the PI3Kδ inhibitor leniolisib
.
Blood
.
2017
;
130
(
21
):
2307
-
2316
.
8.
Rao
VK
,
Webster
S
,
Šedivá
A
, et al.
A randomized, placebo-controlled phase 3 trial of the PI3Kdelta inhibitor leniolisib for activated PI3Kdelta syndrome
.
Blood
.
2023
;
141
(
9
):
971
-
983
.
9.
Magerus
A
,
Rensing-Ehl
A
,
Rao
VK
,
Teachey
DT
,
Rieux-Laucat
F
,
Ehl
S.
Autoimmune lymphoproliferative immunodeficiencies (ALPIDs): a proposed approach to redefining ALPS and other lymphoproliferative immune disorders
.
J Allergy Clin Immunol
.
2024
;
153
(
1
):
67
-
76
.
10.
Rioux
JD
,
Abbas
AK.
Paths to understanding the genetic basis of autoimmune disease
.
Nature
.
2005
;
435
(
7042
):
584
-
589
.
11.
Debatin
KM
,
Stahnke
K
,
Fulda
S.
Apoptosis in hematological disorders
.
Semin Cancer Biol
.
2003
;
13
(
2
):
149
-
158
.
12.
Rao
VK
,
Straus
SE.
Causes and consequences of the autoimmune lymphoproliferative syndrome
.
Hematology
.
2006
;
11
(
1
):
15
-
23
.
13.
Watanabe-Fukunaga
R
,
Brannan
CI
,
Copeland
NG
,
Jenkins
NA
,
Nagata
S.
Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis
.
Nature
.
1992
;
356
(
6367
):
314
-
317
.
14.
Watanabe-Fukunaga
R
,
Brannan
CI
,
Itoh
N
, et al.
The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen
.
J Immunol
.
1992
;
148
(
4
):
1274
-
1279
.
15.
Sneller
MC
,
Straus
SE
,
Jaffe
ES
, et al.
A novel lymphoproliferative/ autoimmune syndrome resembling murine LPR/GLD disease
.
J Clin Invest
.
1992
;
90
(
2
):
334
-
341
.
16.
Oliveira
JB
,
Bleesing
JJ
,
Dianzani
U
, et al.
Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop
.
Blood
.
2010
;
116
(
14
):
e35
-
e40
.
17.
Caminha
I
,
Fleisher
TA
,
Hornung
RL
, et al.
Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome
.
J Allergy Clin Immunol
.
2010
;
125
(
4
):
946
-
949.e6949e6
.
18.
Magerus-Chatinet
A
,
Stolzenberg
M-C
,
Loffredo
M-S
, et al.
FAS-L, IL-10, and double-negative CD4- CD8- TCR alpha/beta+ T cells are reliable markers of autoimmune lymphoproliferative syndrome (ALPS) associated with FAS loss of function
.
Blood
.
2009
;
113
(
13
):
3027
-
3030
.
19.
Rensing-Ehl
A
,
Lorenz
MR
,
Führer
M
, et al.
;
ALPS Study Group
.
Abnormal biomarkers predict complex FAS or FADD defects missed by exome sequencing
.
J Allergy Clin Immunol
.
2024
;
153
(
1
):
297
-
308.e12308e12
.
20.
Fisher
GH
,
Rosenberg
FJ
,
Straus
SE
, et al.
Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome
.
Cell
.
1995
;
81
(
6
):
935
-
946
.
21.
Rieux-Laucat
F
,
Le Deist
F
,
Hivroz
C
, et al.
Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity
.
Science
.
1995
;
268
(
5215
):
1347
-
1349
.
22.
Magerus-Chatinet
A
,
Stolzenberg
M-C
,
Lanzarotti
N
, et al.
Autoimmune lymphoproliferative syndrome caused by a homozygous null FAS ligand (FASLG) mutation
.
J Allergy Clin Immunol
.
2013
;
131
(
2
):
486
-
490
.
23.
Pellé
O
,
Moreno
S
,
Lorenz
MR
, et al.
Combined germline and somatic human FADD mutations cause autoimmune lymphoproliferative syndrome
.
J Allergy Clin Immunol
.
2024
;
153
(
1
):
203
-
215
.
24.
Maccari
ME
,
Schneider
P
,
Smulski
CR
, et al.
Revisiting autoimmune lymphoproliferative syndrome caused by Fas ligand mutations
.
J Allergy Clin Immunol
.
2023
;
151
(
5
):
1391
-
1401.e71401e7
.
25.
Holzelova
E
,
Vonarbourg
C
,
Stolzenberg
M-C
, et al.
Autoimmune lymphoproliferative syndrome with somatic Fas mutations
.
N Engl J Med
.
2004
;
351
(
14
):
1409
-
1418
.
26.
Dowdell
KC
,
Niemela
JE
,
Price
S
, et al.
Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome
.
Blood
.
2010
;
115
(
25
):
5164
-
5169
.
27.
Magerus
A
,
Bercher-Brayer
C
,
Rieux-Laucat
F.
The genetic landscape of the FAS pathway deficiencies
.
Biomed J
.
2021
;
44
(
4
):
388
-
399
.
28.
Jevtich
K
,
Price
S
,
Similuk
M
, et al.
The contribution of rare copy number variants in FAS toward pathogenesis of autoimmune lymphoproliferative syndrome
.
Blood Adv
.
2022
;
6
(
13
):
3974
-
3978
.
29.
Moraitis
AG
,
Freeman
LA
,
Shamburek
RD
, et al.
Elevated interleukin-10: a new cause of dyslipidemia leading to severe HDL deficiency
.
J Clin Lipidol
.
2015
;
9
(
1
):
81
-
90
.
30.
Bowen
RA
,
Dowdell
KC
,
Dale
JK
, et al.
Elevated vitamin B₁₂ levels in autoimmune lymphoproliferative syndrome attributable to elevated haptocorrin in lymphocytes
.
Clin Biochem
.
2012
;
45
(
6
):
490
-
492
.
31.
Hägele
P
,
Staus
P
,
Scheible
R
, et al.
;
ALPID study group
.
Diagnostic evaluation of paediatric autoimmune lymphoproliferative immunodeficiencies (ALPID): a prospective cohort study
.
Lancet Haematol
.
2024
;
11
(
2
):
e114
-
e126
.
32.
Ravell
JC
,
Matsuda-Lennikov
M
,
Chauvin
SD
, et al.
Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease
.
J Clin Invest
.
2020
;
130
(
1
):
507
-
522
.
33.
Teachey
DT
,
Grupp
SA
,
Brown
VI.
Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies
.
Br J Haematol
.
2009
;
145
(
5
):
569
-
580
.
34.
Teachey
DT
,
Obzut
DA
,
Axsom
K
, et al.
Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS)
.
Blood
.
2006
;
108
(
6
):
1965
-
1971
.
35.
Bride
KL
,
Vincent
T
,
Smith-Whitley
K
, et al.
Sirolimus is effective in relapsed/refractory autoimmune cytopenias: results of a prospective multi-institutional trial
.
Blood
.
2016
;
127
(
1
):
17
-
28
.
36.
Völkl
S
,
Rensing-Ehl
A
,
Allgäuer
A
, et al.
Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome
.
Blood
.
2016
;
128
(
2
):
227
-
238
.
37.
Price
S
,
Shaw
PA
,
Seitz
A
, et al.
Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations
.
Blood
.
2014
;
123
(
13
):
1989
-
1999
.
38.
Straus
SE
,
Jaffe
ES
,
Puck
JM
, et al.
The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis
.
Blood
.
2001
;
98
(
1
):
194
-
200
.
39.
Lucas
CL
,
Kuehn
HS
,
Zhao
F
, et al.
Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency
.
Nat Immunol
.
2014
;
15
(
1
):
88
-
97
.
40.
Lucas
CL
,
Zhang
Y
,
Venida
A
, et al.
Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K
.
J Exp Med
.
2014
;
211
(
13
):
2537
-
2547
.
41.
Angulo
I
,
Vadas
O
,
Garçon
F
, et al.
Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage
.
Science
.
2013
;
342
(
6160
):
866
-
871
.
42.
Berglund
LJ.
Modulating the PI3K signalling pathway in activated PI3K delta syndrome: a clinical perspective
.
J Clin Immunol
.
2023
;
44
(
1
):
34
.
43.
Cant
AJ
,
Chandra
A
,
Munro
E
,
Rao
VK
,
Lucas
CL.
PI3Kδ pathway dysregulation and unique features of its inhibition by leniolisib in activated PI3Kδ syndrome and beyond
.
J Allergy Clin Immunol Pract
.
2024
;
12
(
1
):
69
-
78
.
44.
Maccari
ME
,
Wolkewitz
M
,
Schwab
C
, et al.
;
European Society for Immunodeficiencies Registry Working Party
.
Activated phosphoinositide 3-kinase δ syndrome: update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity
.
J Allergy Clin Immunol
.
2023
;
152
(
4
):
984
-
996.e10996e10
.
45.
Coulter
TI
,
Chandra
A
,
Bacon
CM
, et al.
Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: a large patient cohort study
.
J Allergy Clin Immunol
.
2017
;
139
(
2
):
597
-
606.e4606e4
.
46.
Oh
J
,
Garabedian
E
,
Fuleihan
R
,
Cunningham-Rundles
C.
Clinical manifestations and outcomes of activated phosphoinositide 3-kinase δ syndrome from the USIDNET cohort
.
J Allergy Clin Immunol Pract
.
2021
;
9
(
11
):
4095
-
4102
.
47.
Neven
B
,
Magerus-Chatinet
A
,
Florkin
B
, et al.
A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation
.
Blood
.
2011
;
118
(
18
):
4798
-
4807
.
48.
Rao
VK.
Approaches to managing autoimmune cytopenias in novel immunological disorders with genetic underpinnings like autoimmune lymphoproliferative syndrome
.
Front Pediatr
.
2015
;
3
:
65
.
49.
Carrasquillo
JA
,
Chen
CC
,
Price
S
, et al.
18F-FDG PET imaging features of patients with autoimmune lymphoproliferative syndrome
.
Clin Nucl Med
.
2019
;
44
(
12
):
949
-
955
.
50.
Teachey
DT.
New advances in the diagnosis and treatment of autoimmune lymphoproliferative syndrome
.
Curr Opin Pediatr
.
2012
;
24
(
1
):
1
-
8
.
51.
Rao
VK
,
Price
S
,
Perkins
K
, et al.
Use of rituximab for refractory cytopenias associated with autoimmune lymphoproliferative syndrome (ALPS)
.
Pediatr Blood Cancer
.
2009
;
52
(
7
):
847
-
852
.
52.
Hoegenauer
K
,
Soldermann
N
,
Zécri
F
, et al.
Discovery of CDZ173 (leniolisib), representing a structurally novel class of PI3K delta-selective inhibitors
.
ACS Med Chem Lett
.
2017
;
8
(
9
):
975
-
980
.
53.
Duggan
S
,
Al-Salama
ZT.
Leniolisib: first approval
.
Drugs
.
2023
;
83
(
10
):
943
-
948
.
54.
Rao
VK
,
Kulm
E
,
Grossman
J
, et al.
Long-term treatment with selective PI3Kδ inhibitor leniolisib in adults with activated PI3Kδ syndrome
.
Blood Adv
.
2024
;
8
(
12
):
3092
-
3108
.
55.
Rao
VK
,
Kulm
E
,
Šedivá
A
, et al.
Interim analysis: open-label extension study of leniolisib for patients with APDS
.
J Allergy Clin Immunol
.
2024
;
153
(
1
):
265
-
274.e9274e9
.
56.
Dimitrova
D
,
Nademi
Z
,
Maccari
ME
, et al.
International retrospective study of allogeneic hematopoietic cell transplantation for activated PI3K-delta syndrome
.
J Allergy Clin Immunol
.
2022
;
149
(
1
):
410
-
421.e7421e7
.
57.
Leiding
JW
,
Vogel
TP
,
Santarlas
VGJ
, et al.
;
STAT3 GOF Working Group members
.
Monogenic early-onset lymphoproliferation and autoimmunity: natural history of STAT3 gain-of-function syndrome
.
J Allergy Clin Immunol
.
2023
;
151
(
4
):
1081
-
1095
.
58.
Egg
D
,
Rump
IC
,
Mitsuiki
N
, et al.
Therapeutic options for CTLA-4 insufficiency
.
J Allergy Clin Immunol
.
2022
;
149
(
2
):
736
-
746
.
59.
Newman
H
,
Teachey
DT.
PI3king apart a rare disease with targeted therapy
.
Blood
.
2023
;
141
(
9
):
963
-
964
.
60.
Barmettler
S
,
Ong
M-S
,
Farmer
J-R
,
Choi
H
,
Walter
J.
Association of immunoglobulin levels, infectious risk, and mortality with rituximab and hypogammaglobulinemia
.
JAMA Netw Open
.
2018
;
1
(
7
):
e184169
.
61.
Kazatchkine
MD
,
Kaveri
SV.
Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin
.
N Engl J Med
.
2001
;
345
(
10
):
747
-
755
.
You do not currently have access to this content.