The routine use of next-generation sequencing methods has underscored the genetic and clonal heterogeneity of acute myeloid leukemia (AML), subsequently ushering in an era of precision medicine–based targeted therapies exemplified by the small-molecule inhibitors of FLT3, IDH1/IDH2, and BCL2. This advent of targeted drugs in AML has broadened the spectrum of antileukemic therapies, and the approval of venetoclax in combination with a hypomethylating agent has been a welcome addition to our AML patients unable to tolerate intensive chemotherapy. Mounting evidence demonstrates that molecularly targeted agents combined with epigenetic therapies exhibit synergistic augmented leukemic cell kill compared to single-agent therapy. With such great power comes greater responsibility in determining the appropriate frontline AML treatment regimen in a molecularly defined subset and identifying safe and effective combination therapies with different mechanisms of action to outmaneuver primary and secondary resistance mechanisms in AML.

1.
DiNardo
CD
,
Wei
AH
.
How I treat acute myeloid leukemia in the era of new drugs
.
Blood
.
2020
;
135
(
2
):
85
-
96
.
doi:10.1182/blood.2019001239
.
2.
Montesinos
P
,
Recher
C
,
Vives
S
, et al.
Ivosidenib and azacitidine in IDH1-mutated acute myeloid leukemia
.
N Engl J Med
.
2022
;
386
(
16
):
1519
-
1531
.
doi:10.1056/NEJMoa2117344
.
3.
Pratz
KW
,
Jonas
BA
,
Pullarkat
VA
, et al.
Long-term follow-up of the phase 3 Viale-a clinical trial of venetoclax plus azacitidine for patients with untreated acute myeloid leukemia ineligible for intensive chemotherapy
.
Blood
.
2022
;
140
(
suppl 1
):
529
-
531
.
doi:10.1182/blood-2022-158518
.
4.
Benard
BA
,
Leak
LB
,
Azizi
A
,
Thomas
D
,
Gentles
AJ
,
Majeti
R.
Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia
.
Nat Commun
.
2021
;
12
(
1
):
7244
.
doi:10.1038/s41467-021-27472-5
.
5.
DiNardo
CD
,
Tiong
IS
,
Quaglieri
A
, et al.
Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML
.
Blood
.
2020
;
135
(
11
):
791
-
803
.
doi:10.1182/blood.2019003988
.
6.
Choe
S
,
Wang
H
,
DiNardo
CD
, et al.
Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML
.
Blood Adv
.
2020
;
4
(
9
):
1894
-
1905
.
doi:10.1182/bloodadvances.2020001503
.
7.
Stein
EM
,
DiNardo
CD
,
Fathi
AT
, et al.
Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib
.
Blood
.
2019
;
133
(
7
):
676
-
687
.
doi:10.1182/blood-2018-08-869008
.
8.
Smith
CC
,
Levis
MJ
,
Perl
AE
,
Hill
JE
,
Rosales
M
,
Bahceci
E.
Molecular profile of FLT3-mutated relapsed/refractory patients with AML in the phase 3 ADMIRAL study of gilteritinib
.
Blood Adv
.
2022
;
6
(
7
):
2144
-
2155
.
doi:10.1182/bloodadvances.2021006489
.
9.
Ong
F
,
Kim
K
,
Konopleva
MY
.
Venetoclax resistance: mechanistic insights and future strategies
.
Cancer Drug Resist
.
2022
;
5
(
2
):
380
-
400
.
doi:10.20517/cdr.2021.125
.
10.
Chan
SM
,
Thomas
D
,
Corces-Zimmerman
MR
, et al.
Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia
.
Nat Med
.
2015
;
21
(
2
):
178
-
84
.
doi:10.1038/nm.3788
.
11.
Pollyea
DA
,
DiNardo
CD
,
Arellano
ML
, et al.
Impact of venetoclax and azacitidine in treatment-naïve patients with acute myeloid leukemia and IDH1/2 mutations
.
Clin Cancer Res
.
2022
;
28
(
13
):
2753
-
2761
.
doi:10.1158/1078-0432.Ccr-21-3467
.
12.
Watts
JM
,
Baer
MR
,
Yang
J
, et al.
Olutasidenib alone or with azacitidine in IDH1-mutated acute myeloid leukaemia and myelodysplastic syndrome: phase 1 results of a phase 1/2 trial
.
Lancet Haematol
.
2023
;
10
(
1
):
e46
-
e58
.
doi:10.1016/s2352-3026(22)00292-7
.
13.
DiNardo
CD
,
Stein
EM
,
de Botton
S
, et al.
Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML
.
N Engl J Med
.
2018
;
378
(
25
):
2386
-
2398
.
doi:10.1056/NEJMoa1716984
.
14.
de Botton
S
,
Fenaux
P
,
Yee
KWL
, et al.
Olutasidenib (FT-2102) induces durable complete remissions in patients with relapsed or refractory IDH1-mutated AML
.
Blood Adv
.
2023
;
7
(
13
):
3117
-
3127
.
doi:10.1182/bloodadvances.2022009411
.
15.
Cortes
J
,
Watts
J
,
Schiller
G
,
Todd
L
,
Sheppard
A
,
Jonas
BA
.
Olutasidenib in post-venetoclax patients with mutant IDH1 AML
. Paper presented at: 28th Congress of the European Hematology Association; 8-11
June
2023
;
Frankfurt, Germany
.
16.
Cortes
JE
,
Esteve
J
,
Bajel
A
, et al.
Olutasidenib (FT-2102) in combination with azacitidine induces durable complete remissions in patients with mIDH1 acute myeloid leukemia
.
Blood
.
2021
;
138
(
suppl 1
):
698
-
698
.
doi:10.1182/blood-2021-144905
.
17.
Reinbold
R
,
Hvinden
IC
,
Rabe
P
, et al.
Resistance to the isocitrate dehydrogenase 1 mutant inhibitor ivosidenib can be overcome by alternative dimer-interface binding inhibitors
.
Nat Commun
.
2022
;
13
(
1
):
4785
.
doi:10.1038/s41467-022-32436-4
.
18.
DiNardo
CD
,
Maiti
A
,
Rausch
CR
, et al.
10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial
.
Lancet Haematol
.
2020
;
7
(
10
):
e724
-
e736
.
doi:10.1016/s2352-3026(20)30210-6
.
19.
Venugopal
S
,
Maiti
A
,
DiNardo
CD
, et al.
Decitabine and venetoclax for IDH1/2-mutated acute myeloid leukemia
.
Am J Hematol
.
2021
;
96
(
5
):
E154
-
E157
.
doi:10.1002/ajh.26122
.
20.
Stein
EM
,
DiNardo
CD
,
Pollyea
DA
, et al.
Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia
.
Blood
.
2017
;
130
(
6
):
722
-
731
.
doi:10.1182/blood-2017-04-779405
.
21.
DiNardo
CD
,
Schuh
AC
,
Stein
EM
, et al.
Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial
.
Lancet Oncol
.
2021
;
22
(
11
):
1597
-
1608
.
doi:10.1016/s1470-2045(21)00494-0
.
22.
Venugopal
S
,
Takahashi
K
,
Daver
N
, et al.
Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy
.
Blood Cancer J
.
2022
;
12
(
1
):
10
.
doi:10.1038/s41408-021-00604-2
.
23.
Lachowiez
CA
,
Loghavi
S
,
Zeng
Z
, et al.
A phase Ib/II study of ivosidenib with venetoclax +/− azacitidine in IDH1-mutated myeloid malignancies
.
Blood Cancer Discov
.
2023
;
4
(
4
):
276
-
293
.
doi:10.1158/2643-3230.Bcd-22-0205
.
24.
Atluri
H
,
Maiti
A
,
Sasaki
K
, et al.
Phase Ib/2 study of oral decitabine/cedazuridine (ASTX727) and venetoclax in combination with the targeted mutant IDH1 inhibitor ivosidenib or the targeted mutant IDH2 inhibitor enasidenib in IDH mutated acute myeloid leukemia
.
Blood
.
2022
;
140
(
suppl 1
):
6170
-
6172
.
doi:10.1182/blood-2022-164986
.
25.
Issa
GC
,
Bidikian
A
,
Venugopal
S
, et al.
Clinical outcomes associated with NPM1 mutations in patients with relapsed or refractory AML
.
Blood Adv
.
2023
;
7
(
6
):
933
-
942
.
doi:10.1182/bloodadvances.2022008316
.
26.
Uckelmann
HJ
,
Kim
SM
,
Antonissen
NJ
, et al.
MLL-menin inhibition reverses pre-leukemic progenitor self-renewal induced by NPM1 mutations and prevents AML development
.
Blood
.
2018
;
132
(
suppl 1
):
546
.
doi:10.1182/blood-2018-99-110851
.
27.
Issa
GC
,
Aldoss
I
,
DiPersio
J
, et al.
The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia
.
Nature
.
2023
;
615
(
7954
):
920
-
924
.
doi:10.1038/s41586-023-05812-3
.
28.
Konopleva
M
,
Thirman
MJ
,
Pratz
KW
, et al.
Impact of FLT3 mutation on outcomes after venetoclax and azacitidine for patients with treatment-naïve acute myeloid leukemia
.
Clin Cancer Res
.
2022
;
28
(
13
):
2744
-
2752
.
doi:10.1158/1078-0432.Ccr-21-3405
.
29.
Maiti
A
,
DiNardo
CD
,
Daver
NG
, et al.
Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia
.
Blood Cancer J
.
2021
;
11
(
2
):
25
.
doi:10.1038/s41408-021-00410-w
.
30.
Short
N
,
DiNardo
CD
,
Daver
N
, et al.
Updated results from a phase I/II study of the triplet combination of azacitidine, venetoclax and gilteritinib for patients with FLT3-mutated acute myeloid leukemia
.
Blood
.
2022
;
140
(
suppl 1
):
2007
-
2009
.
doi:10.1182/blood-2022-157210
.
31.
Daver
N
,
Perl
AE
,
Maly
J
, et al.
Venetoclax plus gilteritinib for FLT3-mutated relapsed/refractory acute myeloid leukemia
.
J Clin Oncol
.
2022
;
40
(
35
):
4048
-
4059
.
doi:10.1200/JCO.22.00602
.
32.
Bernard
E
,
Nannya
Y
,
Hasserjian
RP
, et al.
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
.
Nat Med
.
2020
;
26
(
10
):
1549
-
1556
.
doi:10.1038/s41591-020-1008-z
.
33.
Venugopal
S
,
Shoukier
M
,
Konopleva
M
, et al.
Outcomes in patients with newly diagnosed TP53-mutated acute myeloid leukemia with or without venetoclax-based therapy
.
Cancer
.
2021
;
127
(
19
):
3541
-
3551
.
doi:10.1002/cncr.33675
.
34.
Kim
K
,
Maiti
A
,
Loghavi
S
, et al.
Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax
.
Cancer
.
2021
;
127
(
20
):
3772
-
3781
.
doi:10.1002/cncr.33689
.
35.
Pollyea
DA
,
Pratz
KW
,
Wei
AH
, et al.
Outcomes in patients with poor-risk cytogenetics with or without TP53 mutations treated with venetoclax and azacitidine
.
Clin Cancer Res
.
2022
;
28
(
24
):
5272
-
5279
.
doi:10.1158/1078-0432.Ccr-22-1183
.
36.
Liu
J
,
Wang
L
,
Zhao
F
, et al.
Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential
.
PLoS One
.
2015
;
10
(
9
):
e0137345
.
doi:10.1371/journal.pone.0137345
.
37.
Sallman
DA
,
Al Malki
MM
,
Asch
AS
, et al.
Magrolimab in combination with azacitidine in patients with higher-risk myelodysplastic syndromes: final results of a phase Ib study
.
J Clin Oncol
.
2023
;
41
(
15
):
2815
-
2826
.
doi:10.1200/jco.22.01794
.
38.
Daver
N
,
Senapati
J
,
Maiti
A
, et al.
Phase I/II study of azacitidine (AZA) with venetoclax (VEN) and magrolimab (Magro) in patients (pts) with newly diagnosed (ND) older/unfit or high-risk acute myeloid leukemia (AML) and relapsed/refractory (R/R) AML
.
Blood
.
2022
;
140
(
suppl 1
):
141
-
144
.
doi:10.1182/blood-2022-170188
.
39.
Vadakekolathu
J
,
Minden
MD
,
Hood
T
, et al.
Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia
.
Sci Transl Med
.
2020
;
12
(
546
):
eaaz0463
.
doi:10.1126/scitranslmed.aaz0463
.
40.
Watts
J
,
Maris
M
,
Lin
TL
, et al.
Updated results from a phase 1 study of APVO436, a novel bispecific anti-CD123 × anti-CD3 Adaptir™ molecule, in relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome
.
Blood
.
2022
;
140
(
suppl 1
):
6204
-
6205
.
doi:10.1182/blood-2022-167468
.
41.
Venugopal
S
,
Watts
JM
.
Olutasidenib: from bench to bedside
.
Blood Adv
.
2023
;
7
(
16
):
4358
-
4365
.
doi:10.1182/bloodadvances.2023009854
.
You do not currently have access to this content.