The application of high-throughput genomic approaches in lymphomas has generated a wealth of data regarding the molecular underpinnings of these cancers. In this review, key findings from recent studies are discussed, as well as the genetic heterogeneity that underlies common lymphomas including diffuse large B-cell lymphoma, Burkitt lymphoma, and chronic lymphocytic leukemia, and the implications for identifying new therapeutic opportunities and personalized medicine.

Lymphomas represent a diverse group of malignancies comprising at least 48 distinct types.1  The classification schemes for lymphomas continue to evolve as we learn more about the molecular underpinnings of these tumors and their presumed cells of origin. However, even within an individual diagnosis, there is usually considerable heterogeneity2  with respect to clinical outcome, genetic alterations, and the expression of commonly assayed markers. Therefore, discerning the correct diagnosis and prognosis for an individual patient with lymphoma remains a daunting clinical challenge.

The advent of high-throughput genomics technologies has provided new opportunities for understanding the molecular building blocks of cancers. The 2 main tools of these technologies, microarrays and high-throughput sequencing, have led to a sea change in our approach to tumor-based measurements. Rather than individual measurements of gene expression or genetic alteration, it is now possible to simultaneously assay these in a genome-wide fashion using genomics technologies. The application of these powerful technologies has yielded several insights into the molecular processes underlying lymphomas.

Although it is not practical to describe the findings in every lymphoma type in sufficient detail, we describe the application of genomics in 3 separate lymphoid tumors, diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and chronic lymphocytic leukemia (CLL), to highlight these approaches and discuss the opportunities and challenges that lie ahead.

DLBCL is the most common form of lymphoma in adults, accounting for approximately 25 000 new cases and nearly 10 000 deaths per year in the United States alone.3  Although more than half of the patients are cured4  with current chemotherapy regimens, the majority of the patients who fail to respond will succumb to the disease. It has proved difficult to develop new therapies for patients with DLBCL. An important reason for the failure of many clinical trials in DLBCL may be the approach to the disease as a single entity, even though it is known to be molecularly and clinically heterogeneous.

The most widely adopted clinical risk stratification of DLBCL remains the International Prognostic Index (IPI),5  a multivariate score composed of age, stage, performance status, serum LDH, and extranodal disease sites. The IPI score remains the accepted standard for clinical stratification nearly 2 decades after it was proposed, being used in several clinical trials and offering a simple method for risk stratification of patients with the worst prognosis. The shortcoming of this scoring system is that the biology underlying the prognosis remains obscure.

Molecular approaches using gene expression profiling to subgroup DLBCLs have added considerably to our understanding of the heterogeneity of the disease. For example, several gene expression profiling studies of patients with DLBCL demonstrated that the tumors comprised at least 2 distinct diseases with different cells of origin, distinct cytogenetic differences, and different response rates to anthracycline-based chemotherapy regimens. One subgroup, termed germinal center B-cell-like (GCB) DLBCL, shares characteristics of normal germinal center B cells, including the expression of genes such as BCL6 and CD10. The other subgroup, termed activated B-cell-like (ABC) DLBCL, expresses genes associated with B-cell activation, including Pim-1 kinase and IRF4. Five-year survival rates for patients with ABC and GCB are significantly different, with a rate of nearly 75% for GCB patients but less than 30% for those with ABC DLBCL.6 

Other approaches to subgrouping DLBCL using gene expression profiling have also been proposed. In particular, another scheme uses gene expression profiling to identify 3 distinct subgroups of DLBCL including those related to B-cell receptor (BCR) activation, host response, and oxidative phosphorylation.7  Although these subgroups did not have prognostic relevance at the time they were described, the advent of BCR-targeted therapies may provide relevance for these findings.8 

Additional gene expression signatures that reflect distinct disease processes have been also described.6,7,9,10  These processes, including those related to proliferation, are also independently associated with survival. However, the biological mechanisms and genomic alterations that are responsible for these changes in gene expression are still poorly understood. In addition, most gene expression signatures have been derived from single studies using microarray-based gene expression. Evaluating and extending these signatures in RNA-sequencing-based gene expression measurements could illuminate additional signatures by including noncoding RNAs11  and defining additional subtypes that are biologically relevant.

Parallel efforts have attempted to integrate outcome associated gene expression into clinically useful prognostic panels with some success. In particular, an assay based upon quantitative PCR of 6 genes (LMO2, BCL6, FN1, CCND2, SCYA3, and BCL2)12  that combines aspects of the prognostic molecular subgroups and outcome-associated gene expression signatures has been applied in the clinical setting.

More recently, high-throughput sequencing has defined the genetic landscape of mutations in DLBCL.13-15  These efforts have revealed that several hundred gene mutations underlie the disease. Even the most common mutations in DLBCL (eg, MLL2 and MLL3) affect only a minority of patients. These findings highlight the difficulties in developing newer therapies for this disease and suggest that targeted approaches will rely on a better understanding of the molecular makeup of each individual patient's tumor.

BL is a highly aggressive form of non-Hodgkin lymphoma that is characterized by deregulation of the MYC (c-myc) gene. Although a relatively uncommon disease, with an annual incidence of ∼ 2000 in the United States,3  it is nevertheless important not only because of its toll on patients, but also because it is a major disease model for molecular studies in many other types of lymphoma and other cancers. The role of MYC in malignancies was first discovered in BL.16  BL tumors and cell lines continue to be used for the exploration of oncogenes and the biology of normal and malignant B cells.17,18 

The diagnostic distinction of BL from DLBCL can be difficult because of overlapping morphology, immunophenotype, and cytogenetics.19  The difficulty and importance of obtaining the correct diagnosis in BL was highlighted by the experience of the Cancer and Leukemia Group B trial CALGB 9251,20  in which nearly half of the 100 patients with an assigned diagnosis of BL were found to have another diagnosis upon careful pathology review. However, the distinction is clinically important because of major differences in the treatment of the 2 diseases. BL requires the use of intensive chemotherapy regimens that carry a higher risk of morbidity and mortality and such treatments are not usually used in DLBCL.

The application of gene expression profiling in BL has shown that BL tumors have a distinct molecular phenotype that allows their distinction from other aggressive lymphomas, including DLBCL.19,21  These data indicate that a group of genes associated with MYC target genes, germinal center differentiation, NF-κB expression, and MHC class-I expression identifies BL with high certainty.

More recent work has identified the genetic makeup of BLs through the application of high-throughput sequencing.22-24  This work has enabled the identification of ID3 as a key tumor suppressor gene that appears to serve as a negative regulator of MYC-driven proliferation. More than 70 other genes were recurrently mutated in the disease, including TP53, PTEN, GNA13, and EZH2, suggesting that multiple genetic pathways can culminate in the observed BL phenotypes.

The relative uncommonness of BL presents a real challenge in designing and accruing appropriate clinical trials. Therefore, approaches that identify the molecular features of these tumors will be needed to better match these patients with therapeutic opportunities and/or clinical trials, particularly in the relapsed setting.

CLL is the most common form of adult leukemia, affecting > 8000 new patients each year. Although the course of the disease can be indolent, a large proportion of patients with CLL will succumb to their disease. In addition to Rai/Binet staging,25,26  which use clinical variables measuring progression, the mutation status of the IGH gene,27  CD38 expression,27-29  and ZAP70 expression30-32  have been shown to be associated with prognosis.

Cytogenetic abnormalities have been extensively tested in CLL, with 17p and 11q deletions conferring the worst prognosis, and trisomy 12, normal karyotype and 13q deletion conferring a relatively favorable prognosis.33,34  The application of high-throughput sequencing in CLL35,36  has identified several recurrently mutated genes in CLL, including those related to DNA-damage response and cell cycle progression (eg, TP53 and ATM), RNA splicing (eg, SF3B1 and DDX3X), and Notch signaling (eg, NOTCH1). Mutations in several of these genes, including TP53,37 NOTCH1,38  and SF3B1,39  are associated with poorer prognosis. However, the role of most genetic mutations and prognosis in CLL remains to be defined.

Intriguingly, it is known that nearly all CLLs arise from monoclonal B-cell lymphocytosis (MBL),40  a surprisingly common condition that rises in incidence with age. Although the majority of patients with MBL will experience a benign course, the genetic risk factors underlying the progression of MBL to CLL remain largely unknown. If the genetic mutations associated with progression to CLL can be defined, it would offer the possibility for risk-adapted methods for surveillance of MBL and potential intervention at an early stage of the disease.

The common thread that unites the application of genomic technologies in virtually every cancer, including lymphomas, is the uncovering of a marked genetic heterogeneity within a single diagnosis. This heterogeneity presents a challenge and a potential opportunity for developing new therapeutics in the disease. Lymphomas themselves are diverse with regard to heterogeneity. Some tumors, such as Waldenstrom macroglobulinemia41  and hairy cell leukemia,42  have common mutations that affect the majority of the patients, suggesting immediate therapeutic targets in these entities. However, even in these entities, the additional mutations that cooccur in the tumor can be very different from patient to patient. In most other lymphomas, the heterogeneity of the disease suggests that no matter the targeted agent being used in a particular lymphoma type, only a small proportion (typically < 25%) of the individuals are likely to harbor a mutation relevant to the targeted pathway.

This observed heterogeneity also offers new opportunities to identify those patients who are most likely to respond to targeted therapy. For example, this approach has been applied successfully in the treatment of melanoma with the BRAF inhibitor vemurafenib43  and in colorectal cancer, in which patients with KRAS mutations are unlikely to respond to cetuximab.44  Rare mutations in IDH1,45 BRAF, and KIT are also observed in lymphomas, providing new potential therapeutic opportunities for patients with those mutations.

As lymphomas are classified and subclassified extensively based on their molecular features (Table 1), there has been a corresponding rise in the identification of intermediate entities that harbor the defining features of more than one lymphoma type. Examples of such entities include those gray zone lymphomas that are intermediate between Hodgkin lymphoma and DLBCL, as well as those between BL and DLBCL. The appropriate diagnosis and treatment of these entities remains a topic of widespread disagreement. The comprehensive profiling of lymphomas will likely increase the number of cases that cannot be classified with great certainty. For example, the gene expression profiling-based distinction of DLBCLs created an additional category of unclassified DLCBLs that did not previously exist. Patients with tumors belonging to these unclassified entities might benefit from having their tumors profiled and from participating in a tumor registry.

Table 1.

Summary of clinically relevant and molecular features of common lymphomas

Summary of clinically relevant and molecular features of common lymphomas
Summary of clinically relevant and molecular features of common lymphomas

The application of high-throughput technologies has created new opportunities and challenges in the risk stratification and treatment of patients with lymphomas. Ultimately, there is a simple yardstick to measure progress in this rapidly expanding field: “Does it lead to a better outcome for the patient?” The evolving story of heterogeneity in the molecular makeup of lymphomas will demand a variety of risk-adaptive strategies for clinical trial design and assessment of response. Patients likely to respond to the inhibition of PI3 kinase inhibitors46  could be distinct from those likely to respond to BRAF inhibitors and other targeted therapies. In the short term, the application of genomics has complicated our understanding of lymphomas and other cancers by identifying a plethora of genetic aberrations that characterize these tumors. In the long term, these studies form the basis of personalized medicine in which the genomic profile of each patient's tumor might be used to guide therapy that is most likely to benefit that patient.

Conflict-of-interest disclosure: The author declares no competing financial interests. Off-label drug use: None disclosed.

Sandeep S. Dave, MD, Department of Medicine, Duke University School of Medicine, DUMC 3382, Durham, NC 27710; Phone: 919-681-1922; Fax: 919-684-4777; e-mail: ssd9@duke.edu.

1
Swerdlow
S
Campo
E
Harris
NL
International Agency for Research on Cancer
,
WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue
,
2008
Geneva
World Health Organization
2
Zhang
J
Grubor
V
Love
CL
et al.
,
Genetic heterogeneity of diffuse large B-cell lymphoma
,
Proc Natl Acad Sci U S A
,
2013
, vol.
110
4
(pg.
1398
-
1403
)
3
Morton
LM
Wang
SS
Devesa
SS
Hartge
P
Weisenburger
DD
Linet
MS
,
Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001
,
Blood
,
2006
, vol.
107
1
(pg.
265
-
276
)
4
Sehn
LH
Donaldson
J
Chhanabhai
M
et al.
,
Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia
,
J Clin Oncol
,
2005
, vol.
23
22
(pg.
5027
-
5033
)
5
Shipp
M
,
A predictive model for aggressive non-Hodgkin's lymphoma
,
N Engl J Med
,
1993
, vol.
329
14
(pg.
987
-
994
)
6
Lenz
G
Wright
G
Dave
SS
et al.
,
Stromal gene signatures in large-B-cell lymphomas
,
N Engl J Med
,
2008
, vol.
359
22
(pg.
2313
-
2323
)
7
Monti
S
Savage
KJ
Kutok
JL
et al.
,
Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response
,
Blood
,
2005
, vol.
105
5
(pg.
1851
-
1861
)
8
Polo
JM
Juszczynski
P
Monti
S
et al.
,
Transcriptional signature with differential expression of BCL6 target genes accurately identifies BCL6-dependent diffuse large B cell lymphomas
,
Proc Natl Acad Sci U S A
,
2007
, vol.
104
9
(pg.
3207
-
3212
)
9
Tome
ME
Johnson
DB
Rimsza
LM
et al.
,
A redox signature score identifies diffuse large B-cell lymphoma patients with a poor prognosis
,
Blood
,
2005
, vol.
106
10
(pg.
3594
-
3601
)
10
Bentink
S
Wessendorf
S
Schwaenen
C
et al.
,
Pathway activation patterns in diffuse large B-cell lymphomas
,
Leukemia
,
2008
, vol.
22
9
(pg.
1746
-
1754
)
11
Jima
DD
Zhang
J
Jacobs
C
et al.
,
Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs
,
Blood
,
2010
, vol.
116
23
(pg.
e118
-
e127
)
12
Lossos
IS
Czerwinski
DK
Alizadeh
AA
et al.
,
Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes
,
N Engl J Med
,
2004
, vol.
350
18
(pg.
1828
-
1837
)
13
Morin
RD
Mendez-Lago
M
Mungall
AJ
et al.
,
Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma
,
Nature
,
2011
, vol.
476
7360
(pg.
298
-
303
)
14
Pasqualucci
L
Trifonov
V
Fabbri
G
et al.
,
Analysis of the coding genome of diffuse large B-cell lymphoma
,
Nat Genet
,
2011
, vol.
43
9
(pg.
830
-
837
)
15
Lohr
JG
Stojanov
P
Lawrence
MS
et al.
,
Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing
,
Proc Natl Acad Sci U S A
,
2012
, vol.
109
10
(pg.
3879
-
3884
)
16
Dalla-Favera
R
Martinotti
S
Gallo
RC
Erikson
J
Croce
CM
,
Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas
,
Science
,
1983
, vol.
219
4587
(pg.
963
-
967
)
17
Polo
JM
Dell'Oso
T
Ranuncolo
SM
et al.
,
Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells
,
Nat Med
,
2004
, vol.
10
12
(pg.
1329
-
1335
)
18
Zhang
J
Jima
DD
Jacobs
C
et al.
,
Patterns of microRNA expression characterize stages of human B cell differentiation
,
Blood
,
2009
, vol.
113
19
(pg.
4586
-
4594
)
19
Dave
SS
Fu
K
Wright
GW
et al.
,
Molecular diagnosis of Burkitt's lymphoma
,
N Engl J Med
,
2006
, vol.
354
23
(pg.
2431
-
2442
)
20
Rizzieri
DA
Johnson
JL
Niedzwiecki
D
et al.
,
Intensive chemotherapy with and without cranial radiation for Burkitt leukemia and lymphoma: final results of Cancer and Leukemia Group B Study 9251
,
Cancer
,
2004
, vol.
100
7
(pg.
1438
-
1448
)
21
Hummel
M
Bentink
S
Berger
H
et al.
,
A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling
,
N Engl J Med
,
2006
, vol.
354
23
(pg.
2419
-
2430
)
22
Schmitz
R
Young
RM
Ceribelli
M
et al.
,
Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics
,
Nature
,
2012
, vol.
490
7418
(pg.
116
-
120
)
23
Richter
J
Schlesner
M
Hoffmann
S
et al.
,
Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing
,
Nat Genet
,
2012
, vol.
44
12
(pg.
1316
-
1320
)
24
Love
C
Sun
Z
Jima
D
et al.
,
The genetic landscape of mutations in Burkitt lymphoma
,
Nat Genet
,
2012
, vol.
44
12
(pg.
1321
-
1325
)
25
Rai
KR
Chiorazzi
N
,
Determining the clinical course and outcome in chronic lymphocytic leukemia
,
N Engl J Med
,
2003
, vol.
348
18
(pg.
1797
-
1799
)
26
Binet
JL
Auquier
A
Dighiero
G
et al.
,
A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis
,
Cancer
,
1981
, vol.
48
1
(pg.
198
-
206
)
27
Damle
RN
Wasil
T
Fais
F
et al.
,
Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia
,
Blood
,
1999
, vol.
94
6
(pg.
1840
-
1847
)
28
D'Arena
G
Musto
P
Cascavilla
N
et al.
,
CD38 expression correlates with adverse biological features and predicts poor clinical outcome in B-cell chronic lymphocytic leukemia
,
Leuk Lymphoma
,
2001
, vol.
42
1-2
(pg.
109
-
114
)
29
Del Poeta
G
Maurillo
L
Venditti
A
et al.
,
Clinical significance of CD38 expression in chronic lymphocytic leukemia
,
Blood
,
2001
, vol.
98
9
(pg.
2633
-
2639
)
30
Crespo
M
Bosch
F
Villamor
N
et al.
,
ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia
,
N Engl J Med
,
2003
, vol.
348
18
(pg.
1764
-
1775
)
31
Rosenwald
A
Alizadeh
AA
Widhopf
G
et al.
,
Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia
,
J Exp Med
,
2001
, vol.
194
11
(pg.
1639
-
1648
)
32
Orchard
JA
Ibbotson
RE
Davis
Z
et al.
,
ZAP-70 expression and prognosis in chronic lymphocytic leukaemia
,
Lancet
,
2004
, vol.
363
9403
(pg.
105
-
111
)
33
Dohner
H
Stilgenbauer
S
Benner
A
et al.
,
Genomic aberrations and survival in chronic lymphocytic leukemia
,
N Engl J Med
,
2000
, vol.
343
26
(pg.
1910
-
1916
)
34
Byrd
JC
Gribben
JG
Peterson
BL
et al.
,
Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy
,
J Clin Oncol
,
2006
, vol.
24
3
(pg.
437
-
443
)
35
Quesada
V
Conde
L
Villamor
N
et al.
,
Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia
,
Nat Genet
,
2012
, vol.
44
1
(pg.
47
-
52
)
36
Wang
L
Lawrence
MS
Wan
Y
et al.
,
SF3B1 and other novel cancer genes in chronic lymphocytic leukemia
,
N Engl J Med
,
2011
, vol.
365
26
(pg.
2497
-
2506
)
37
Oscier
DG
Gardiner
AC
Mould
SJ
et al.
,
Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors
,
Blood
,
2002
, vol.
100
4
(pg.
1177
-
1184
)
38
Sportoletti
P
Baldoni
S
Cavalli
L
et al.
,
NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL
,
Br J Haematol
,
2010
, vol.
151
4
(pg.
404
-
406
)
39
Rossi
D
Bruscaggin
A
Spina
V
et al.
,
Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness
,
Blood
,
2011
, vol.
118
26
(pg.
6904
-
6908
)
40
Landgren
O
Albitar
M
Ma
W
et al.
,
B Cell clones as early markers of chronic lymphocytic leukemia
,
N Engl J Med
,
2009
, vol.
360
7
(pg.
659
-
667
)
41
Treon
SP
Xu
L
Yang
G
et al.
,
MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia
,
N Engl J Med
,
2012
, vol.
367
9
(pg.
826
-
833
)
42
Tiacci
E
Trifonov
V
Schiavoni
G
et al.
,
BRAF mutations in hairy-cell leukemia
,
N Engl J Med
,
2011
, vol.
364
24
(pg.
2305
-
2315
)
43
Chapman
PB
Hauschild
A
Robert
C
et al.
,
Improved survival with vemurafenib in melanoma with BRAF V600E mutation
,
N Engl J Med
,
2011
, vol.
364
26
(pg.
2507
-
2516
)
44
Karapetis
CS
Khambata-Ford
S
Jonker
DJ
et al.
,
K-ras mutations and benefit from cetuximab in advanced colorectal cancer
,
N Engl J Med
,
2008
, vol.
359
17
(pg.
1757
-
1765
)
45
Rohle
D
Popovici-Muller
J
Palaskas
N
et al.
,
An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells
,
Science
,
2013
, vol.
340
6132
(pg.
626
-
630
)
46
Walsh
KJ
McKinney
MS
Love
C
et al.
,
PAK1 mediates resistance to PI3 kinase inhibition in lymphomas
,
Clin Cancer Res
,
2013
, vol.
19
5
(pg.
1106
-
1115
)