Precursor states such as clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance, carry distinct risks for progression to myeloid neoplasms and age-related comorbidities. While biologically distinct, idiopathic cytopenia of undetermined significance is also a differential diagnostic consideration for these precursor lesions. Through 3 illustrative cases, we highlight the diagnostic complexity and clinical relevance of these entities, emphasizing the need for integrated clinical, morphologic, and molecular assessment to guide individualized patient care. Emerging evidence suggests that CHIP contributes not only to hematopoietic stem cell aberrations and potential myeloid neoplasia but also to cardiovascular disease and solid-tumor outcomes, reinforcing its significance as a systemic biomarker. We summarize the current risk stratification tools and ongoing clinical trials aimed at modulating inflammation and clonal dynamics in CH-associated conditions. We also outline our approach from our Clonal Hematopoiesis Clinic, which incorporates surveillance, preventive care, and clinical trial enrollment. Establishing standardized diagnostic criteria, harmonizing trial frameworks, and formally incorporating CHIP into hematology, oncology, cardiology, and survivorship paradigms will be essential to reducing long-term morbidity and improving patient outcomes.

1.
Khoury
JD
,
Solary
E
,
Abla
O
, et al.
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: myeloid and histiocytic/dendritic neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1703
-
1719
.
2.
Loghavi
S
,
Kanagal-Shamanna
R
,
Khoury
JD
, et al.
Fifth edition of the World Health classification of tumors of the hematopoietic and lymphoid tissues
.
Mod Pathol
.
2023
;
37
:
100397
.
3.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al.
International Consensus Classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
4.
van Zeventer
IA
,
de Graaf
AO
,
Koorenhof-Scheele
TN
, et al.
Monocytosis and its association with clonal hematopoiesis in community-dwelling individuals
.
Blood Adv
.
2022
;
6
(
14
):
4174
-
4184
.
5.
Cazzola
M.
Clonal monocytosis of clinical significance
.
Blood
.
2019
;
133
(
12
):
1271
-
1272
.
6.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
7.
Belizaire
R
,
Wong
WJ
,
Robinette
ML
,
Ebert
BL
.
Clonal haematopoiesis and dysregulation of the immune system
.
Nat Rev Immunol
.
2023
;
23
(
9
):
595
-
610
.
8.
Fuster
JJ
,
MacLauchlan
S
,
Zuriaga
MA
, et al.
Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice
.
Science
.
2017
;
355
(
6327
):
842
-
847
.
9.
Sano
S
,
Oshima
K
,
Wang
Y
, et al.
TET2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome
.
J Am Coll Cardiol
.
2018
;
71
(
8
):
875
-
886
.
10.
Jaiswal
S
,
Libby
P.
Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease
.
Nat Rev Cardiol
.
2020
;
17
(
3
):
137
-
144
.
11.
Jaiswal
S
,
Natarajan
P
,
Silver
AJ
, et al.
Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease
.
N Engl J Med
.
2017
;
377
(
2
):
111
-
121
.
12.
Libby
P
,
Sidlow
R
,
Lin
AE
, et al.
Clonal hematopoiesis: crossroads of aging, cardiovascular disease, and cancer: JACC review topic of the week
.
J Am Coll Cardiol
.
2019
;
74
(
4
):
567
-
577
.
13.
Pich
O
,
Bernard
E
,
Zagorulya
M
, et al.
Tumor-infiltrating clonal hematopoiesis
.
N Engl J Med
.
2025
;
392
(
16
):
1594
-
1608
.
14.
Buttigieg
MM
,
Vlasschaert
C
,
Bick
AG
,
Vanner
RJ
,
Rauh
MJ
.
Inflammatory reprogramming of the solid tumor microenvironment by infiltrating clonal hematopoiesis is associated with adverse outcomes
.
Cell Rep Med.
2025
;
6
(
3
):
101989
.
15.
Buttigieg
MM
,
Rauh MJ. Clonal hematopoiesis: updates and implications at the solid tumor–immune interface
.
JCO Precis Oncol
.
2023
;
7
:
e2300132
.
16.
Gu
M
,
Kovilakam
SC
,
Dunn
WG
, et al.
Multiparameter prediction of myeloid neoplasia risk
.
Nat Genet
.
2023
;
55
(
9
):
1523
-
1530
.
17.
Weeks
LD
,
Niroula
A
,
Neuberg
D
, et al.
Prediction of risk for myeloid malignancy in clonal hematopoiesis
.
NEJM Evidence.
2023
;
2
(
5
).
18.
Xie
Z
,
Komrokji
RS
,
Al-Ali
N
, et al.
Risk prediction for clonal cytopenia: multicenter real-world evidence
.
Blood
.
2024
;
144
(
19
):
2033
-
2044
.
19.
Xie
Z
,
Komrokji
Z
,
Otterstatter
M
, et al.
High-risk CCUS is clinically indistinguishable from low-risk myelodysplastic syndromes/neoplasms
.
Blood
.
2024
;
144
(
suppl 1
):
354
.
20.
Sauta
E
,
Robin
M
,
Bersanelli
M
, et al.
Real-world validation of molecular international prognostic scoring system for myelodysplastic syndromes
.
J Clin Oncol
.
2023
;
41
(
15
):
2827
-
2842
.
21.
Xie
Z
,
Fernandez
J
,
Lasho
TL
, et al.
High-dose IV ascorbic acid therapy in CCUS patients with TET2 mutations
.
Blood
.
2024
;
144
(
23
):
2456
-
2461
.
22.
Svensson
EC
,
Madar
A
,
Campbell
CD
, et al.
TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial
.
JAMA Cardiol
.
2022
;
7
(
5
):
521
-
528
.
23.
Marston
NA
,
Pirruccello
JP
,
Melloni
GEM
, et al.
Clonal hematopoiesis, cardiovascular events and treatment benefit in 63,700 individuals from five TIMI randomized trials
.
Nat Med
.
2024
;
30
(
9
):
2641
-
2647
.
24.
Zhang
Y
,
Park
M
,
Ghoda
LY
, et al.
IL1RAP-specific T cell engager depletes acute myeloid leukemia stem cells
.
J Hematol Oncol
.
2024
;
17
(
1
):
67
.
25.
de Boer
B
,
Sheveleva
S
,
Apelt
K
, et al.
The IL1-IL1RAP axis plays an important role in the inflammatory leukemic niche that favors acute myeloid leukemia proliferation over normal hematopoiesis
.
Haematologica
.
2021
;
106
(
12
):
3067
-
3078
.
26.
Platzbecker
U
,
Giovanni
M
,
Porta
D
, et al.
Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): interim analysis of a phase 3, open-label, randomised controlled trial
.
Lancet
.
2023
;
402
(
10399
):
373
-
385
.
27.
Fenaux
P
,
Platzbecker
U
,
Mufti
GJ
, et al.
Luspatercept in patients with lower-risk myelodysplastic syndromes
.
N Engl J Med
.
2020
;
382
(
2
):
140
-
151
.
28.
Khalil
H
,
Kanisicak
O
,
Prasad
V
, et al.
Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis
.
J Clin Invest
.
2017
;
127
(
10
):
3770
-
3783
.
29.
DeZern
A.
Progression of myelodysplastic syndromes in the MDS Natural History Study (MDS NHS)
.
Blood
.
2024
;
144
:
1831
.
30.
Haque
T
,
Shastri
A
,
Desai
P
, et al.
A blueprint for pursuing therapeutic interventions and early phase clinical trials in clonal haematopoiesis
.
Br J Haematol
.
2024
;
416
-
427
.
31.
Teipel
R
,
Kroschinsky
F
,
Kramer
M
, et al.
Prevalence and variation of CHIP in patients with aggressive lymphomas undergoing CD19-directed CAR T-cell treatment
.
Blood Adv
.
2022
;
6
(
6
):
1941
-
1946
.
32.
Saini
NY
,
Swoboda
DM
,
Greenbaum
U
, et al.
Clonal hematopoiesis is associated with increased risk of severe neurotoxicity in axicabtagene ciloleucel therapy of large B-cell lymphoma
.
Blood Cancer Discov
.
2022
;
3
:
OF1
-
OF9
.
33.
Miller
PG
,
Sperling
AS
,
Brea
EJ
, et al.
Clonal hematopoiesis in patients receiving chimeric antigen receptor T-cell therapy
.
Blood Adv
.
2021
;
5
(
15
):
2982
-
2986
.
34.
Xie
Z
,
Zeidan
AM
.
CHIPing away the progression potential of CHIP: a new reality in the making
.
Blood Rev
.
2023
;
58
:
101001
.
35.
Hamilton
M.
Single institution analysis of lymphoma treatment related post-CAR myeloid neoplasms
.
Blood
.
2024
;
144
(
suppl 1
):
96
.
36.
Levine
BL
,
Pasquini
MC
,
Connolly
JE
, et al.
Unanswered questions following reports of secondary malignancies after CAR-T cell therapy
.
Nat Med
.
2024
;
30
(
2
):
338
-
341
.
37.
Gazeau
N
,
Beauvais
D
,
Tilmont
R
, et al.
Myeloid neoplasms after CD19- directed CAR T cells therapy in long-term B-cell lymphoma responders, a rising risk over time?: immunotherapy
.
Leukemia
.
2025
;
39
(
7
):
1714
-
1722
.
38.
San-Miguel
J
,
Dhakal
B
,
Yong
K
, et al.
Cilta-cel or standard care in lenalidomide-refractory multiple myeloma
.
N Engl J Med
.
2023
;
389
(
4
):
335
-
347
.
39.
Munshi
NC
,
Anderson
LD
,
Shah
N
, et al.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
40.
Bolton
KL
,
Ptashkin
RN
,
Gao
T
, et al.
Cancer therapy shapes the fitness landscape of clonal hematopoiesis
.
Nat Genet
.
2020
;
52
(
11
):
1219
-
1226
.
41.
Coombs
CC
,
Zehir
A
,
Devlin
SM
, et al.
Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes
.
Cell Stem Cell
.
2017
;
21
(
3
):
374
-
382.e4
.
42.
Rhee
JW.
Clonal hematopoiesis is associated with non-myeloid subsequent malignant neoplasms after autologous hematopoietic cell transplantation
.
Blood
.
2024
;
144
(
suppl 1
):
947
.
43.
Rhee
JW
,
Pillai
R
,
He
T
, et al.
Clonal hematopoiesis and cardiovascular disease in patients with multiple myeloma undergoing hematopoietic cell transplant
.
JAMA Cardiol
.
2024
;
9
(
1
):
16
-
24
.
44.
Rhee
JW
,
Pillai
R
,
Chen
S
, et al.
Clonal hematopoiesis and risk of heart failure after autologous hematopoietic cell transplantation for lymphoma
.
JACC CardioOncol
.
2025
;
7
(
1
):
20
-
33
.
45.
Steensma
DP
,
Bolton
KL
.
What to tell your patient with clonal hematopoiesis and why: insights from two specialized clinics
.
Blood
.
2020
;
136
(
14
):
1623
-
1631
.
46.
Díez-Díez
M
,
Ramos-Neble
BL
,
de la Barrera
J
, et al.
Unidirectional association of clonal hematopoiesis with atherosclerosis development
.
Nat Med
.
2024
;
30
(
10
):
2857
-
2866
.
47.
Kim
PG
,
Niroula
A
,
Shkolnik
V
, et al.
Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis
.
J Exp Med
.
2021
;
218
(
12
):
e20211872
.
48.
Chakraborty
S
,
Park
CY
.
Connecting the dots: lenalidomide and t-MNs
.
Blood
.
2022
;
140
(
16
):
1745
-
1747
.
49.
Sperling
AS
,
Guerra
VA
,
Kennedy
JA
, et al.
Lenalidomide promotes the development of TP53-mutated therapy-related myeloid neoplasms
.
Blood
.
2022
;
140
(
16
):
1753
-
1763
.
50.
Liu
J
,
Tran
D
,
Xue
L
, et al.
Germline genetic variation impacts clonal hematopoiesis landscape and progression to malignancy
.
Nat Genet
.
2025
;
57
(
8
):
1872
-
1880
.
51.
Makishima
H
,
Saiki
R
,
Nannya
Y
, et al.
Germ line DDX41 mutations define a unique subtype of myeloid neoplasms
.
Blood
.
2023
;
141
(
5
):
534
-
549
.
You do not currently have access to this content.