The efficacy and tolerability of the combination of hypomethylating agents with venetoclax (HMA-VEN) in patients with newly diagnosed acute myeloid leukemia has been a practice-changing milestone in the field. However, treatment failure and relapse remain major barriers to prolonged survival. TP53 mutation is a predictor of primary induction failure and portends especially poor outcomes. Prelinical data suggest that VEN resistance stems from these genetic changes, which lead to increases in antiapoptotic proteins such as MCL-1 and BCLXL. For patients who discontinue HMA-VEN for reasons other than disease progression, such as post allotransplantation, infection, and personal preference, rechallenge with HMA-VEN at the time of relapse may be considered. For those who progress on HMA-VEN, clinical trials with novel agents or rational drug combinations are preferred if available. If no trial option is available, fit patients may benefit from intensive chemotherapy. Emerging therapies aim to overcome venetoclax resistance, target interactions that promote leukemogenesis, and harness the immune system to irradicate leukemic blasts and stem cells.

1.
DiNardo
CD
,
Jonas
BA
,
Pullarkat
V
,
Thirman
MJ
,
Garcia
JS
,
Wei
AH
, et al.
Azacitidine and venetoclax in previously untreated acute myeloid leukemia
.
N Engl J Med
.
2020
;
383
(
7
):
617
-
629
.
doi:10.1056/NEJMoa2012971.
2.
Pratz
KW
,
Jonas
BA
,
Pullarkat
VA
, et al.
Long-term follow-up of the phase 3 Viale-a clinical trial of venetoclax plus azacitidine for patients with untreated acute myeloid leukemia ineligible for intensive chemotherapy
.
Blood
.
2022
;
140
(
suppl 1
):
529
-
531
.
doi:10.1182/blood-2022-158518.
3.
DiNardo
CD
,
Tiong
IS
,
Quaglieri
A
, et al.
Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML
.
Blood
.
2020
;
135
(
11
):
791
-
803
.
doi:10.1182/blood.2019003988.
4.
Heuser
M
,
Freeman
SD
,
Ossenkoppele
GJ
, et al.
2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party
.
Blood
.
2021
;
138
(
26
):
2753
-
2767
.
doi:10.1182/blood.2021013626.
5.
Pratz
KW
,
Jonas
BA
,
Pullarkat
V
, et al.
Measurable residual disease response and prognosis in treatment-naïve acute myeloid leukemia with venetoclax and azacitidine
.
J Clin Oncol
.
2022
;
40
(
8
):
855
-
865
.
doi:10.1200/JCO.21.01546.
6.
Ong
F
,
Kim
K
,
Konopleva
MY
.
Venetoclax resistance: mechanistic insights and future strategies
.
Cancer Drug Resist
.
2022
;
5
(
2
):
380
-
400
.
doi:10.20517/cdr.2021.125.
7.
Lachowiez
CA
,
Atluri
H
,
DiNardo
CD
.
Advancing the standard: venetoclax combined with intensive induction and consolidation therapy for acute myeloid leukemia
.
Ther Adv Hematol
.
2022
;
13
(
April
):20406207221093964.
doi:10.1177/20406207221093964.
8.
Kale
J
,
Osterlund
EJ
,
Andrews
DW
.
BCL-2 family proteins: changing partners in the dance towards death
.
Cell Death Differ
.
2018
;
25
(
1
):
65
-
80
.
doi:10.1038/cdd.2017.186.
9.
Lin
KH
,
Winter
PS
,
Xie
A
, et al.
Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia
.
Sci Rep
.
2016
;
6
(
10 June
):
27696
.
doi:10.1038/srep27696.
10.
Zhang
H
,
Nakauchi
Y
,
Köhnke
T
, et al.
Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia
.
Nat Cancer
.
2020
;
1
(
8
):
826
-
839
.
doi:10.1038/s43018-020-0103-x.
11.
Zhang
Q
,
Riley-Gillis
B
,
Han
L
, et al.
Correction: activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
110
.
doi:10.1038/s41392-022-00958-4.
12.
Nechiporuk
T
,
Kurtz
SE
,
Nikolova
O
, et al.
The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells
.
Cancer Discov
.
2019
;
9
(
7
):
910
-
925
.
doi:10.1158/2159-8290.CD-19-0125.
13.
Kuusanmäki
H
,
Leppä
AM
,
Pölönen
P
, et al.
Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia
.
Haematologica
.
2020
;
105
(
3
):
708
-
720
.
doi:10.3324/haematol.2018.214882.
14.
Pei
S
,
Pollyea
DA
,
Gustafson
A
, et al.
Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia
.
Cancer Discov
.
2020
;
10
(
4
):
536
-
551
.
doi:10.1158/2159-8290.CD-19-0710.
15.
Waclawiczek
A
,
Leppa
AM
,
Renders
S
, et al.
Combinatorial BCL2 family expression in acute myeloid leukemia stem cells predicts clinical response to azacitidine/venetoclax
.
Cancer Discov
.
2023
;
13
(
6
):
1408
-
1427
.
doi:10.1158/2159-8290.CD-22-0939.
16.
Othman
TA
,
Zhang
J
,
Mei
M
, et al.
Retreatment with venetoclax and hypomethylating agents among AML patients who have relapsed after initial response and subsequent interruption of therapy
.
Leuk Lymphoma
.
2020
;
61
(
14
):
3532
-
3533
.
doi:10.1080/10428194.2020.1808213.
17.
Chua
CC
,
Hammond
D
,
Kent
A
, et al.
Treatment-free remission after ceasing venetoclax-based therapy in patients with acute myeloid leukemia
.
Blood Adv
2022
;
6
(
13
):
3879
-
3883
.
doi:10.1182/bloodadvances.2022007083.
18.
Maiti
A
,
Rausch
CR
,
Cortes
JE
, et al.
Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens
.
Haematologica
.
2021
;
106
(
3
):
894
-
898
.
doi:10.3324/haematol.2020.252569.
19.
Ilyas
R
,
Johnson
IM
,
McCullough
K
, et al.
Outcome of patients with acute myeloid leukemia following failure of front-line venetoclax plus hypomethylating agent therapy
.
Blood
.
2022
;
140
(
suppl 1
):
1286
-
1287
.
doi:10.1182/blood-2022-165491.
20.
Cherry
EM
,
Abbott
D
,
Amaya
M
, et al.
Venetoclax and azacitidine compared with induction chemotherapy for newly diagnosed patients with acute myeloid leukemia
.
Blood Adv
.
2021
;
5
(
24
):
5565
-
5573
.
doi:10.1182/bloodadvances.2021005538.
21.
Gutman
JA
,
Winters
A
,
Amaya
ML
, et al.
Venetoclax and azacitidine for newly diagnosed non-elderly adult patients with acute myeloid leukemia and adverse risk features
.
Blood
.
2020
;
136
(
suppl 1
):
9
.
doi:10.1182/blood-2020-136120.
22.
Matthews
AH
,
Perl
AE
,
Luger
SM
, et al.
Real-world effectiveness of intensive chemotherapy with 7&3 versus venetoclax and hypomethylating agent in acute myeloid leukemia
.
Am J Hematol
.
2023
;
98
(
8
):
1254
-
1264
.
doi:10.1002/ajh.26991.
23.
Matthews
AH
,
Perl
AE
,
Luger
SM
, et al.
Real-world effectiveness of CPX-351 vs venetoclax and azacitidine in acute myeloid leukemia
.
Blood Adv
.
2022
;
6
(
13
):
3997
-
4005
.
doi:10.1182/bloodadvances.2022007265.
24.
McMahon
CM
,
Gil
K
,
Amaya
ML
, et al.
Response to intensive induction chemotherapy after failure of frontline azacitidine+venetoclax in acute myeloid leukemia
.
Blood
.
2022
;
140
(
suppl 1
):
6185
-
6186
.
doi:10.1182/blood-2022-170168.
25.
Zucenka
A
,
Pileckyte
R
,
Trociukas
I
, et al.
Outcomes of relapsed or refractory acute myeloid leukemia patients failing venetoclax-based salvage therapies
.
Eur J Haematol
.
2021
;
106
(
1
):
105
-
113
.
doi:10.1111/ejh.13527.
26.
Wang
H
,
Guo
M
,
Wei
H
,
Chen
Y.
Targeting MCL-1 in cancer: current status and perspectives
.
J Hematol Oncol
.
2021
;
14
(
1
):
67
.
doi:10.1186/s13045-021-01079-1.
27.
Fiskus
W
,
Boettcher
S
,
Daver
N
, et al.
Effective menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c)
.
Blood Cancer J
.
2022
;
12
(
1
):
5
.
doi:10.1038/s41408-021-00603-3.
28.
Klossowski
S
,
Miao
H
,
Kempinska
K
, et al.
Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia
.
J Clin Invest
.
2020
;
130
(
2
):
981
-
997
.
doi:10.1172/JCI129126.
29.
Issa
GC
,
Aldoss
I
,
DiPersio
JF
, et al.
The menin inhibitor SNDX-5613 (revumenib) leads to durable responses in patients (Pts) with KMT2A-rearranged or NPM1 mutant AML: updated results of a phase (Ph) 1 study
.
Blood
.
2022
;
140
(
suppl 1
):
150
-
152
.
doi:10.1182/blood-2022-164849.
30.
Fathi
AT
,
Wang
ES
,
Issa
GC
, et al.
Activity, tolerability, and resistance profile of the menin inhibitor ziftomenib in adults with relapsed/refractory NPM1-mutated AML
. Paper presented at: 28th Congress of the European Hematology Association; 8-11 June
2023
;
Frankfurt, Germany
.
31.
Konopleva
M
,
Martinelli
G
,
Daver
N
, et al.
MDM2 inhibition: an important step forward in cancer therapy
.
Leukemia
.
2020
;
34
(
11
):
2858
-
2874
.
doi:10.1038/s41375-020-0949-z.
32.
Stein
EM
,
DeAngelo
DJ
,
Chromik
J
, et al.
Results from a first-in-human phase I study of siremadlin (HDM201) in patients with advanced wild-type TP53 solid tumors and acute leukemia
.
Clin Cancer Res
.
2022
;
28
(
5
):
870
-
881
.
doi:10.1158/1078-0432.CCR-21-1295.
33.
Stone
RM
,
Mandrekar
SJ
,
Sanford
BL
, et al.
Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation
.
N Engl J Med
.
2017
;
377
(
5
):
454
-
464
.
doi:10.1056/NEJMoa1614359.
34.
Perl
AE
,
Martinelli
G
,
Cortes
JE
, et al.
Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML
.
N Engl J Med
.
2019
;
381
(
18
):
1728
-
1740
.
doi:10.1056/NEJMoa1902688.
35.
Daver
N
,
Lee
KH
,
Jung
CW
, et al.
First in human (FIH) FLT3 and SYK inhibitor HM43239 shows single agent activity in patients (pts) with relapsed or refractory (R/R) FLT3 mutated and wild-type acute myeloid leukemia (AML)
.
Blood
.
2021
;
138
(
suppl 1
):
702
.
doi:10.1182/blood-2021-150014.
36.
Bae
I
,
Choi
J
,
Song
J
, et al.
Abstract 1257: HM43239, a novel FLT3 inhibitor, has the potential to inhibit mutations resistant to FLT3 inhibitors
.
Cancer Research
.
2021
;
81
(
suppl 13
):
1257
.
doi:10.1158/1538-7445.Am2021-1257.
37.
Kovtun
Y
,
Jones
GE
,
Adams
S
, et al.
A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells
.
Blood Adv
.
2018
;
2
(
8
):
848
-
858
.
doi:10.1182/bloodadvances.2018017517.
38.
Kuruvilla
VM
,
McCarthy
R
,
Zhang
Qet al
.
IMGN632, a CD123-alkylating ADC bearing a DNA-alkylating IGN payload, combines effectively with azacitidine and venetoclax in vivo, prolonging survival in preclinical models of human acute myeloid leukemia (AML)
.
Blood
.
2019
;
134
(
suppl 1
):
1375
.
doi:10.1182/blood-2019-124963.
39.
Daver
N
,
Aribi
A
,
Montesinos
P
, et al.
Safety and efficacy from a phase 1b/2 study of IMGN632 in combination with azacitidine and venetoclax for patients with CD123-positive acute myeloid leukemia
.
Blood
.
2021
;
138
(
suppl 1
):
372
.
doi:10.1182/blood-2021-146503.
40.
Daver
NG
,
Maiti
A
,
Kadia
TM
, et al.
TP53-mutated myelodysplastic syndrome and acute myeloid leukemia: biology, current therapy, and future directions
.
Cancer Discov
.
2022
;
12
(
11
):
2516
-
2529
.
doi:10.1158/2159-8290.CD-22-0332.
41.
Roloff
GW
,
Odenike
O
,
Bajel
A
,
Wei
AH
,
Foley
N
,
Uy
GL
.
Contemporary approach to acute myeloid leukemia therapy in 2022
.
Am Soc Clin Oncol Educ Book
.
2022
;
42
(
April
):
1
-
16
.
doi:10.1200/EDBK_349605.
42.
Daver
N
,
Senapati
J
,
Maiti
A
, et al.
Phase I/II study of azacitidine (AZA) with venetoclax (VEN) and magrolimab (Magro) in patients (pts) with newly diagnosed (ND) older/unfit or high-risk acute myeloid leukemia (AML) and relapsed/refractory (R/R) AML
.
Blood
.
2022
;
140
(
suppl 1
):
141
-
144
.
doi:10.1182/blood-2022-170188.
You do not currently have access to this content.