Figure 5.
Figure 5. In vivo Sp1 binding to the promoters of hTERT, c-Myc, and C17, as determined by ChIP assay. (A, left) Nuclear extracts from the same samples used in ChIP were immunoblotted with c-Myc and Sp1 antibodies. Coomassie blue staining served as loading control. (Right) SYBR green real-time PCR shows diminished Sp1 and c-Myc binding on the hTERT promoter after arsenic (0.75 μM for 12 days) exposure. Mock indicates no nuclear extract in the reaction; No Ab, omission of antibody in the immunoprecipitation procedures. HGF antibody was used as a control IgG. PCR products obtained at 35 cycles and resolved on agarose gel are shown below the graph. (B-C) SYBR green real-time PCR quantification of ChIP using anti-Sp1 antibody shows a significant decrease in Sp1 binding in the promoters of MYC (B) and C17 (C) after arsenic treatment. Error bars represent standard deviations from triplicate experiments.

In vivo Sp1 binding to the promoters of hTERT, c-Myc, and C17, as determined by ChIP assay. (A, left) Nuclear extracts from the same samples used in ChIP were immunoblotted with c-Myc and Sp1 antibodies. Coomassie blue staining served as loading control. (Right) SYBR green real-time PCR shows diminished Sp1 and c-Myc binding on the hTERT promoter after arsenic (0.75 μM for 12 days) exposure. Mock indicates no nuclear extract in the reaction; No Ab, omission of antibody in the immunoprecipitation procedures. HGF antibody was used as a control IgG. PCR products obtained at 35 cycles and resolved on agarose gel are shown below the graph. (B-C) SYBR green real-time PCR quantification of ChIP using anti-Sp1 antibody shows a significant decrease in Sp1 binding in the promoters of MYC (B) and C17 (C) after arsenic treatment. Error bars represent standard deviations from triplicate experiments.

Close Modal

or Create an Account

Close Modal
Close Modal