Figure 5.
Figure 5. Isolated CD34+ cells revealed hematopoietic progenitor potential. (A) Schematic diagram of the protocol used for CD34+ cells' isolation and analysis. (B) Relative expression of hematopoiesis-associated genes in CD34+ and CD34– populations by QPCR. (C) Clonogenic potential of H1 CD34+ and CD34– cells. Results are mean ± SD of 4 experiments. (D) Rho efflux and CD45 expression by isolated CD34+ cells were analyzed by flow cytometry. The gates used to distinguish Rholow population of CD34+CD45+ cells and percentages of Rholow cells within this gate (mean ± SD of 3 experiments; H1 = 2, H9 = 1) are indicated. (E) ALDH and CD45 expression by isolated CD34+ cells were analyzed by flow cytometry. The gates used to distinguish the ALDHhigh population of CD34+CD45+ cells and percentages of ALDHhigh cells within the gates (mean ± SD of 3 experiments; H1 = 2, H9 = 1) are indicated.

Isolated CD34+ cells revealed hematopoietic progenitor potential. (A) Schematic diagram of the protocol used for CD34+ cells' isolation and analysis. (B) Relative expression of hematopoiesis-associated genes in CD34+ and CD34 populations by QPCR. (C) Clonogenic potential of H1 CD34+ and CD34 cells. Results are mean ± SD of 4 experiments. (D) Rho efflux and CD45 expression by isolated CD34+ cells were analyzed by flow cytometry. The gates used to distinguish Rholow population of CD34+CD45+ cells and percentages of Rholow cells within this gate (mean ± SD of 3 experiments; H1 = 2, H9 = 1) are indicated. (E) ALDH and CD45 expression by isolated CD34+ cells were analyzed by flow cytometry. The gates used to distinguish the ALDHhigh population of CD34+CD45+ cells and percentages of ALDHhigh cells within the gates (mean ± SD of 3 experiments; H1 = 2, H9 = 1) are indicated.

Close Modal

or Create an Account

Close Modal
Close Modal