Figure 1.
Figure 1. DNA and RNA analysis. (A) DNA sequencing of the HAMP gene led to identification of a new mutation at position +14 from the Cap site of the mRNA. Left side: wild-type nucleotide G at position +14; right side: mutated nucleotide A. (B) RNA was extracted from a biopsy obtained from the proband's liver and analyzed by RT-PCR for the presence of HAMP cDNA. The ethidium bromide stained agarose gel shows similar expression of the patient's HAMP cDNA (lane 4) compared with cDNA obtained from normal (lanes 1-2) and cirrhotic livers (lane 3). RT-PCR for abl was performed in parallel to ensure that equal quantities of cDNA were used for each PCR. Real-time PCR was performed for a more accurate determination of HAMP cDNA levels. The table shows only minor variations of the HAMP/abl ratios between the different samples (1-2, normal liver; 3, cirrhotic liver; 4, proband's liver).

DNA and RNA analysis. (A) DNA sequencing of the HAMP gene led to identification of a new mutation at position +14 from the Cap site of the mRNA. Left side: wild-type nucleotide G at position +14; right side: mutated nucleotide A. (B) RNA was extracted from a biopsy obtained from the proband's liver and analyzed by RT-PCR for the presence of HAMP cDNA. The ethidium bromide stained agarose gel shows similar expression of the patient's HAMP cDNA (lane 4) compared with cDNA obtained from normal (lanes 1-2) and cirrhotic livers (lane 3). RT-PCR for abl was performed in parallel to ensure that equal quantities of cDNA were used for each PCR. Real-time PCR was performed for a more accurate determination of HAMP cDNA levels. The table shows only minor variations of the HAMP/abl ratios between the different samples (1-2, normal liver; 3, cirrhotic liver; 4, proband's liver).

Close Modal

or Create an Account

Close Modal
Close Modal