Fig. 1.
Fig. 1. Constructs for generation of first-generation and HD vectors used in this study. / Sequences used for the production of first-generation adenoviral vectors are based on the plasmid pAdHM4,21 and 2 hFIX expression cassettes, with (A) and without (B) the 3′ untranslated region (3′UTR). The hFIX expression cassette shown in panel B was flanked by 1 or 2 MARs-ChMAR and IgκMAR, (C-D). The structure of the vectors AdFTC and AdFTC/hFIX for gutless adenoviral production are shown in panels E and F. The plasmid pAdFTC is based on the plasmid pDYAL containing a 16.2-kb fragment of alphoid repeat DNA from human chromosome 17. The alphoid repeat DNA is flanked by a 4.2-kb fragment containing the left terminus of adenovirus type 5 (nt 1-452), 2 copies of the Igκ MAR, and a 1.2-kb fragment containing the HCR, an MCS with recognition sites for the restriction endonucleasesPacI and PmeI and the right terminus of adenovirus type 5 (nt 35 796-35 935).

Constructs for generation of first-generation and HD vectors used in this study.

Sequences used for the production of first-generation adenoviral vectors are based on the plasmid pAdHM4,21 and 2 hFIX expression cassettes, with (A) and without (B) the 3′ untranslated region (3′UTR). The hFIX expression cassette shown in panel B was flanked by 1 or 2 MARs-ChMAR and IgκMAR, (C-D). The structure of the vectors AdFTC and AdFTC/hFIX for gutless adenoviral production are shown in panels E and F. The plasmid pAdFTC is based on the plasmid pDYAL containing a 16.2-kb fragment of alphoid repeat DNA from human chromosome 17. The alphoid repeat DNA is flanked by a 4.2-kb fragment containing the left terminus of adenovirus type 5 (nt 1-452), 2 copies of the Igκ MAR, and a 1.2-kb fragment containing the HCR, an MCS with recognition sites for the restriction endonucleasesPacI and PmeI and the right terminus of adenovirus type 5 (nt 35 796-35 935).

Close Modal

or Create an Account

Close Modal
Close Modal