Fig. 1.
Fig. 1. Targeted disruption of the murine. / Fancg gene. (A) Schematic representation of the murine Fancg gene showing 14 exons. The targeted allele has exons 2 to 9 replaced by the FRT-flanked neomycin cassette. There are translational stop codons in 3 reading frames 5′ to the neomycin cassette to terminate any potential upstream translation. Primers used for genotype and RT-PCR are indicated. (B) PCR genotype of mouse tail DNA using primers indicated in panel A. Primers Gex5F and Gex6R amplify a 285 base pair (bp) product specifically from the wild-type allele (WT), whereas primers Psv and G40 amplify a 580 bp product specifically from the mutant allele (MT). (C) RT-PCR of the wild-typeFancg mRNA using primers Gex5F and Gex6R fromFancg+/− testes but not fromFancg−/− testes. A 360 bp RT-PCR product of β2-microglobulin was used as an internal control (β2M).

Targeted disruption of the murine

Fancg gene. (A) Schematic representation of the murine Fancg gene showing 14 exons. The targeted allele has exons 2 to 9 replaced by the FRT-flanked neomycin cassette. There are translational stop codons in 3 reading frames 5′ to the neomycin cassette to terminate any potential upstream translation. Primers used for genotype and RT-PCR are indicated. (B) PCR genotype of mouse tail DNA using primers indicated in panel A. Primers Gex5F and Gex6R amplify a 285 base pair (bp) product specifically from the wild-type allele (WT), whereas primers Psv and G40 amplify a 580 bp product specifically from the mutant allele (MT). (C) RT-PCR of the wild-typeFancg mRNA using primers Gex5F and Gex6R fromFancg+/− testes but not fromFancg−/− testes. A 360 bp RT-PCR product of β2-microglobulin was used as an internal control (β2M).

Close Modal

or Create an Account

Close Modal
Close Modal