Fig. 6.
Fig. 6. The carboxy-terminus of DUB enzymes is not required for enzymatic activity. / (A) Schematic representation of DUB-1 and DUB-2A,and mutant forms. aa indicates amino acids. (B) Deubiquitination of ubiquitin-β-galactosidase (Ub-Met-β-gal) fusion protein expressed in bacteria. The upper panel is an immuoblot using anti–β-gal antiserum. Coexpressed plasmids were pBlueScript empty vector (lane 1); pBlueScript–DUB-2A (lane 2); pGEX–DUB-1 (lane 3); pGEX–DUB-2A (M/H) (lane 4); pGEX–DUB-1 (B/V) (lane 5); pGEX–DUB-2A(N/H) (lane 6); and pGEX–DUB-1 (1.5) (lane 7). The Ub-Met-β-gal fusion protein substrate was not cleaved in lanes 1, 6, and 7. The lower panel is an immunoblot using an anti-GST monoclonal antibody. In addtion to the full-length GST-fusion proteins, partial degradation products are also observed in lanes 2 through 7.

The carboxy-terminus of DUB enzymes is not required for enzymatic activity.

(A) Schematic representation of DUB-1 and DUB-2A,and mutant forms. aa indicates amino acids. (B) Deubiquitination of ubiquitin-β-galactosidase (Ub-Met-β-gal) fusion protein expressed in bacteria. The upper panel is an immuoblot using anti–β-gal antiserum. Coexpressed plasmids were pBlueScript empty vector (lane 1); pBlueScript–DUB-2A (lane 2); pGEX–DUB-1 (lane 3); pGEX–DUB-2A (M/H) (lane 4); pGEX–DUB-1 (B/V) (lane 5); pGEX–DUB-2A(N/H) (lane 6); and pGEX–DUB-1 (1.5) (lane 7). The Ub-Met-β-gal fusion protein substrate was not cleaved in lanes 1, 6, and 7. The lower panel is an immunoblot using an anti-GST monoclonal antibody. In addtion to the full-length GST-fusion proteins, partial degradation products are also observed in lanes 2 through 7.

Close Modal

or Create an Account

Close Modal
Close Modal