Fig. 2.
Fig. 2. Function of human embryonic ζ- and -globins in adult murine erythrocytes. (A) Determination of mouse -globin genotypes by Southern analysis. Duplicate Southern transfers ofPst I–digested DNA from wild-type mice (+/+), mice carrying the hζ transgene (+/+/hζ), mice heterozygous for deletion of the m-globin genes (+/−), and mice heterozygous for deletion of the m-globin genes that carried the hζ transgene (+/−/hζ). Blots were probed with a 1.3-kb fragment originating 5′ to the deleted m-globin sequences (upper autoradiograph)23 or the h-globin promoter (lower autoradiograph).18 The sizes and identities of the wild-type (m+) and deleted m-globin loci (m−), and the hζ transgene (hζ) are indicated to the left and right of each autoradiograph, respectively. (B) Determination of mouse β-globin genotypes by combined Southern and PCR analyses. Tail DNA from mice was coamplified using paired oligomers recognizing wild-type mβ-globin genes (250-bp product) or a fragment of the HPRT cDNA comprising the knockout ‘socket’ (179-bp product).24 Reaction products were resolved and visualized on an ethidium bromide–stained 5% polyacrylamide gel. Genotypes are indicated at top. Southern analysis of the same DNA (bottom) using the 572-bp h probe indicates the presence/absence of the h transgene. The sizes and identities of the wild-type (mβ+) and deleted mβ-globin loci (mβ−), and the h transgene (h) are indicated to the left and right of each autoradiograph, respectively. (C) Thalassemic erythrocyte morphology in m+/− mice is corrected by coexpression of embryonic ζ-globin. Wright-Giemsa–stained peripheral blood smears from wild-type, m+/−, and m+/−/hζ mice, viewed under oil at 100 × magnification. A typical ‘target cell’ is indicated (arrow). (D) Thalassemic erythrocyte morphology in mβ+/− mice is corrected by coexpression of embryonic -globin. Wright-Giemsa–stained peripheral blood smears from wild-type, mβ+/−, and mβ+/−/h mice viewed under oil at 100 × magnification. (E) Resolution of anemia and normalization of erythrocyte indices in m+/− mice coexpressing embryonic ζ-globin. Erythrocyte analyses were performed on anticoagulated whole blood collected from duplicate sex-matched 13-week adult siblings. The Hb (○), RBC number (□), MCV (▾), and MCH (◊) are plotted for mice with the globin genotypes and sexes indicated at bottom. (F) Resolution of anemia and normalization of erythrocyte indices in mβ+/− mice expressing embryonic -globin. Analyses were performed on anticoagulated whole blood collected from duplicate sex-matched 9-week adult siblings as described in (E). The globin genotypes and sexes are indicated at bottom.

Function of human embryonic ζ- and -globins in adult murine erythrocytes. (A) Determination of mouse -globin genotypes by Southern analysis. Duplicate Southern transfers ofPst I–digested DNA from wild-type mice (+/+), mice carrying the hζ transgene (+/+/hζ), mice heterozygous for deletion of the m-globin genes (+/−), and mice heterozygous for deletion of the m-globin genes that carried the hζ transgene (+/−/hζ). Blots were probed with a 1.3-kb fragment originating 5′ to the deleted m-globin sequences (upper autoradiograph)23 or the h-globin promoter (lower autoradiograph).18 The sizes and identities of the wild-type (m+) and deleted m-globin loci (m), and the hζ transgene (hζ) are indicated to the left and right of each autoradiograph, respectively. (B) Determination of mouse β-globin genotypes by combined Southern and PCR analyses. Tail DNA from mice was coamplified using paired oligomers recognizing wild-type mβ-globin genes (250-bp product) or a fragment of the HPRT cDNA comprising the knockout ‘socket’ (179-bp product).24 Reaction products were resolved and visualized on an ethidium bromide–stained 5% polyacrylamide gel. Genotypes are indicated at top. Southern analysis of the same DNA (bottom) using the 572-bp h probe indicates the presence/absence of the h transgene. The sizes and identities of the wild-type (mβ+) and deleted mβ-globin loci (mβ), and the h transgene (h) are indicated to the left and right of each autoradiograph, respectively. (C) Thalassemic erythrocyte morphology in m+/− mice is corrected by coexpression of embryonic ζ-globin. Wright-Giemsa–stained peripheral blood smears from wild-type, m+/−, and m+/−/hζ mice, viewed under oil at 100 × magnification. A typical ‘target cell’ is indicated (arrow). (D) Thalassemic erythrocyte morphology in mβ+/− mice is corrected by coexpression of embryonic -globin. Wright-Giemsa–stained peripheral blood smears from wild-type, mβ+/−, and mβ+/−/h mice viewed under oil at 100 × magnification. (E) Resolution of anemia and normalization of erythrocyte indices in m+/− mice coexpressing embryonic ζ-globin. Erythrocyte analyses were performed on anticoagulated whole blood collected from duplicate sex-matched 13-week adult siblings. The Hb (○), RBC number (□), MCV (▾), and MCH (◊) are plotted for mice with the globin genotypes and sexes indicated at bottom. (F) Resolution of anemia and normalization of erythrocyte indices in mβ+/− mice expressing embryonic -globin. Analyses were performed on anticoagulated whole blood collected from duplicate sex-matched 9-week adult siblings as described in (E). The globin genotypes and sexes are indicated at bottom.

Close Modal

or Create an Account

Close Modal
Close Modal